Wind Pressure Characteristics of the Roof of Jining North Railway Station Under Downburst
-
摘要: 下击暴流是一种破坏力极强的极端天气,会对建筑物产生巨大破坏。为探究下击暴流对大跨结构屋盖的影响,利用计算流体力学(CFD)进行数值模拟,以济宁北站为原型探究风向角、径向距离以及云层移动速度对屋盖风压的影响。研究结果表明:济宁北站上屋盖在下击暴流的作用下整体处于负风压作用,且最大负风压位置出现在屋盖迎风区域。济宁北站的屋盖迎风面前缘风压变化梯度很大,最大风压出现在风向角为0°时的屋盖前缘,其最大负风压系数可以达到-2.5左右。济宁北站屋盖的最大负风压出现在径向距离为1.25Djet附近,其上屋盖的背风区受径向距离的影响较小。喷口的移动对屋盖迎风区前缘的负风压产生了增强效果。Abstract: Downbursts are extremely destructive weather events that can cause massive damage to buildings. In order to investigate the influence of downburst on the roof of long-span structures, CFD was used to conduct numerical simulations, and Jining North Railway Station was taken as the prototype to explore the influence of wind angle, radial distance, and moving speed of cloud layer on the roof wind pressure. The results showed that, the upper roof of Jining North Railway Station was under negative wind pressure affected by the action of downburst, and the maximum negative wind pressure occurred in the windward area of the roof. The maximum wind pressure appeared at the front edge of the roof when the wind angle was 0°, and its maximum negative wind pressure coefficient could reach about -2.5. The maximum negative wind pressure of the roof of Jining North Railway Station occurred near the radial distance of 1.25Djet, and the leeward area of the upper roof was less affected by the radial distance. The movement of the jet enhanced the negative wind pressure at the windward area of the roof.
-
Key words:
- downburst /
- wind pressure characteristics /
- Jining North Railway Station /
- wind angle /
- radial distance
-
[1] LETCHFORD C W, MANS C, CHAY M T, et al. Thunderstorms:their importance in wind engineering (a case for the next generation wind tunnel)[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(12): 1415-1433. [2] CHOI E C, TANURDJAJA A. Extreme wind studies in Singapore: an area with mixed weather system[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(12): 1611-1630. [3] 田利, 毕文哲, SIDDIQUI Sarim Saleem, 等.建筑结构抗下击暴流研究综述[J].山东大学学报(工学版), 2021, 51(5): 32-41. [4] 陈勇, 崔碧琪, 彭志伟, 等.球壳型屋盖在冲击风作用下的抗风设计参数及CFD分析[J].空气动力学学报, 2012, 30(4): 456-463. [5] 方智远, 李正良, 汪之松.下击暴流作用下不同深宽比的高层建筑风荷载[J].东南大学学报(自然科学版), 2019, 49(3): 488-494. [6] 褚云朋, 孙鑫晖, 李明, 等.下击暴流作用下菱形马鞍面屋盖风压特性[J].工程力学, 2022, 39(3):182-192. [7] JESSON M, STERLING M, LETCHFORD C W, et al. Aerodynamic forces on generic buildings subject to transient, downburst-type winds[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 137: 58-68. [8] 邹鑫, 汪之松, 李正良.稳态冲击风作用下高层建筑风荷载特性试验研究[J].湖南大学学报(自然科学版), 2016, 43(1):29-36. [9] 吉柏锋, 瞿伟廉, 王亮, 等.下击暴流作用下输电塔弹塑性失稳倒塌研究[J].中国安全科学学报, 2014, 24(12):90-95. [10] 汪之松, 向明, 江水灵, 等.下击暴流作用下大跨平屋面的极值风压分析[J].振动与冲击, 2022, 41(11):83-89. [11] 李志国, 彭宇轩, 秦川, 等.大跨曲面屋盖脉动风荷载非高斯分布特性试验研究[J].工业建筑, 2021, 51(7):84-89, 106. [12] 许伟, 李庆祥.大跨度火车站结构的风荷载效应综合研究[J].工业建筑, 2018, 48(3):78-82, 126. [13] 柳广义, 吉柏锋, 瞿伟廉, 等.下击暴流下立方体建筑物表面风压数值模拟[J].华中科技大学学报(自然科学版), 2020, 48(5):37-41. [14] HJELMFELT M R. Structure and life circle of microburst outinflows observed in Colorado[J]. Journal of Applied Metorology and Climatology, 1988, 27(8): 900-927. [15] CHAY M T. Physical modeling of thunderstorm downbursts for wind engineering applications[D]. Lubbock (TX, USA): Texas Tech University, 2001. [16] WOOD G S, KWORK K C S. Physical and numerical modeling of thunderstorm downbursts[C]//Proceedings of the tenth international Conference on Wind Engineering. Denmark:1991:1919-1924. [17] 中华人民共和国住房和城乡建设部.建筑结构荷载规范: GB 50009—2012[S]. 北京: 中国建筑工业出版社, 2012. [18] 李艺, 黄国庆, 程旭, 等.移动型下击暴流及其作用下高层建筑风荷载的数值模拟[J].工程力学, 2020, 37(3):176-187. [19] 徐挺. 雷暴冲击风流场试验模拟[D].杭州:浙江大学, 2010. [20] 赵丽娜. 移动型下击暴流风场及对高层建筑作用的数值模拟[D].成都:西南交通大学, 2018.
点击查看大图
计量
- 文章访问数: 29
- HTML全文浏览量: 3
- PDF下载量: 2
- 被引次数: 0