中国科技核心期刊
RCCSE中国核心学术期刊
JST China收录期刊
中国建筑科学领域高质量科技期刊分级目录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硫酸盐侵蚀下混凝土细观模型及参数表征

刘新荣 陈海 庄炀 周小涵 肖宇

刘新荣, 陈海, 庄炀, 周小涵, 肖宇. 硫酸盐侵蚀下混凝土细观模型及参数表征[J]. 工业建筑, 2024, 54(9): 177-184. doi: 10.3724/j.gyjzG23042807
引用本文: 刘新荣, 陈海, 庄炀, 周小涵, 肖宇. 硫酸盐侵蚀下混凝土细观模型及参数表征[J]. 工业建筑, 2024, 54(9): 177-184. doi: 10.3724/j.gyjzG23042807
LIU Xinrong, CHEN Hai, ZHAUNG Yang, ZHOU Xiaohan, XIAO Yu. Mesoscopic Model and Parameter Characterization of Concrete Under Sulfate Attack[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(9): 177-184. doi: 10.3724/j.gyjzG23042807
Citation: LIU Xinrong, CHEN Hai, ZHAUNG Yang, ZHOU Xiaohan, XIAO Yu. Mesoscopic Model and Parameter Characterization of Concrete Under Sulfate Attack[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(9): 177-184. doi: 10.3724/j.gyjzG23042807

硫酸盐侵蚀下混凝土细观模型及参数表征

doi: 10.3724/j.gyjzG23042807
基金项目: 

浙江省交通运输厅科技计划项目(2020028)。

详细信息
    作者简介:

    刘新荣,博士,教授,主要从事隧道工程、纤维混凝土、地下空间开发利用等方向的研究,liuxrong@126.com。

    通讯作者:

    庄炀,博士,zhuangyangchn@126.com。

Mesoscopic Model and Parameter Characterization of Concrete Under Sulfate Attack

  • 摘要: 硫酸盐侵蚀是导致混凝土损伤劣化的主要因素之一,其中预测硫酸根离子在混凝土中的时空分布是研究混凝土损伤劣化的基础。相比于宏观模型,细观模型更能反映硫酸根离子在混凝土中的实际运移规律,但存在建模复杂、计算时间漫长等问题。将混凝土看作由水泥砂浆、界面层、粗骨料、宏观缺陷组成的四项复合材料,构建了混凝土二维细观模型,进而研究对比宏、细观模型对数值模拟的影响,并定义细观参数使宏观模型达到细观模型的模拟效果。结果表明:1)细观模型随机性对硫酸根离子扩散的影响可以通过取多组模型的平均值消除;2)含石量的增加伴随着侵蚀深度加深和同一位置处硫酸根离子浓度降低,且随着深度的增加,这种现象更加明显;3)细观参数随含石量的增加而增大。
  • [1] 肖力光,李正鹏.混凝土耐久性的影响因素及研究进展[J].混凝土,2022,398(12):1-5

    ,16.
    [2] LORENTE S, YSSORCHE-CUBAYNES M P, AUGER J. Sulfate transfer through concrete: migration and diffusion results[J]. Cement & Concrete Composites, 2011, 33(7):735-741.
    [3] YAN X C, JIANG L H, ZHU P H, et al. Effect of compressive fatigue on sulfate ion diffusion in standard-cured and steam-cured concrete containing slag[J]. Journal of Materials in Civil Engineering,2022,34(7),04022130.
    [4] 齐晓,肖前慧,邱继生,等.冻融与硫酸盐侵蚀共同作用下再生混凝土的微观结构研究[J].硅酸盐通报,2023,42(4):1194-1204.
    [5] 乔宏霞,乔国斌,路承功.硫酸盐环境下基于COMSOL混凝土损伤劣化模型[J].华中科技大学学报(自然科学版),2021,49(3):119-125.
    [6] ZUO X, WEI S, HUA L, et al. Modeling of diffusion-reaction behavior of sulfate ion in concrete under sulfate environments[J]. Computers & Concrete, 2012, 10(1):47-51.
    [7] GUAN B, CHEN S, SHENG Y, et al. Numerical simulation of sulfate ion migration in cement concrete under corrosion fatigue[J]. International Journal of Pavement Research and Technology, 2012, 5(3):169-175.
    [8] ZHUANG Y, LIU X, ZHOU X, et al. Diffusion model of sulfate ions in concrete based on pore change of cement mortar and its application in mesoscopic numerical simulation [J]. Structure Concrete, 2022, 23(6): 3786-3803.
    [9] PAN Z C, CHEN A R, MA R J, et al. Three-dimensional lattice modeling of concrete carbonation at meso-scale based on reconstructed coarse aggregates[J]. Construction Building Material,2018(192): 253-271.
    [10] SUN D, WU K, SHI H, et al. Effect of interfacial transition zone on the transport of sulfate ions in concrete[J]. Construction Building Material,2018(192): 28-37.
    [11] WANG H L, CHEN Z W, LI H D, et al. Numerical simulation of external sulphate attack in concrete considering coupled chemo-diffusion-mechanical effect[J/OL]. Construction Building Material,2021(292)[2023-04-28]. https://doi.org/10.1016/j.conbuildmat.2021.123325.
    [12] SCHLANGEN E, VANMIER J G M. Simple lattice model for numerical-simulation of fracture of concrete materials and structures[J]. Material Structure,1992, 25(153): 534-542.
    [13] WANG Z M, KWAN A K H, CHAN H C. Mesoscopic study of concrete I: generation of random aggregate structure and finite element mesh[J]. Computers & Structures,1999, 70(5): 533-544.
    [14] ZHU Z, XU W, CHEN H. The fraction of overlapping interphase around 2D and 3D polydisperse non-spherical particles: Theoretical and numerical models[J]. Comput Method Appl M, 2019, 345: 728-747.
    [15] ZUO X B, LI H, SUN W, et al. Geometrical model for tortuosity of transport paths in hardened cement pastes[J]. Advance Cement Research,2012, 24(3): 145-154.
    [16] CAO T, ZHANG L, SUN G, et al. Model for predicting the tortuosity of transport paths in cement-based materials[J/OL]. Materials,2019, 12(21)[2023-04-28]. https://doi.org/10.3390/ma12213623.
    [17] IDIART A E, LOPEZ C M, CAROL I. Chemo-mechanical analysis of concrete cracking and degradation due to external sulfate attack: a meso-scale model [J]. Cement Concrete Comp, 2011,33(3):411-423.
    [18] CHEN H, HU H, QIAN C. Study on the deterioration process of cement-based materials under sulfate attack and drying-wetting cycles [J]. Structure Concrete, 2018,19 (4): 1225-1234.
    [19] QIAN C, NIE Y, CAO T. Sulphate attack-induced damage and micro-mechanical properties of concrete characterized by nano-indentation coupled with X-ray computed tomography [J]. Structure Concrete, 2016,17 (1): 96-104.
    [20] SUN C, CHEN J, ZHU J, et al. A new diffusion model of sulfate ions in concrete [J]. Construction Building Material, 2013,39: 39-45.
    [21] CHEN J, JIANG M, ZHU J. Damage evolution in cement mortar due to erosion of sulphate [J]. Corrosion Sci, 2008,50 (9): 2478-2483.
    [22] 刘新荣, 杜立兵, 邓志云,等. 基于闵科夫斯基差和优化波前法的二维天然堆石料生成方法及应用 [J]. 岩石力学与工程学报, 2020,39 (9): 1832-1846.
    [23] DU L, LIU X, HAN Y, et al. Optimized advance front method of packing dense ellipse for generating the convex polygon structure statistically equivalent with real material [J/OL]. Computational Particle Mechanics,2020[2023-04-28]. https://doi.org/10.1007/s40571-020-00370-1.
    [24] LI C, ZHANG D, DU S, et al. Computed tomography based numerical simulation for triaxial test of soil-rock mixture [J]. Computers and Geotechnics, 2016,73: 179-188.
    [25] 孙超. 基于侵蚀损伤演化的混凝土中硫酸根离子扩散模型[D].宁波:宁波大学,2012.
    [26] LIAO K, ZHANG Y, ZHANG W, et al. Modeling constitutive relationship of sulfate-attacked concrete[J]. Construction Building Material, 2020, 260:1-20.
    [27] 高润东. 复杂环境下混凝土硫酸盐侵蚀微—宏观劣化规律研究[D].北京:清华大学,2010.
    [28] TIAN B, COHEN M. Does gypsum formation during sulfate attack on concrete lead to expansion?[J]. Cement Concrete Research,2000,30(1):117-123.
    [29] 陈艾荣, 潘子超. 细观尺度上的钢筋混凝土结构耐久性数值模拟 [M]. 北京:科学出版社,2016.
    [30] PAPADAKIS V G, VAYENAS C G, FARDIS M N. Fundamental modeling and experimental investigation of carbonation[J]. ACI Material Journal,1991,88(4):363-373.
  • 加载中
计量
  • 文章访问数:  6
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-28
  • 网络出版日期:  2024-10-18

目录

    /

    返回文章
    返回