Research on the Ultimate Bearing Capacity of BFRP-Confined Square Steel Tubular Mortar Specimens Under Axial Compression
-
摘要: 为研究玄武岩纤维布(BFRP)-方钢管砂浆的轴压性能,共进行了不同BFRP层数和截面高度的9个BFRP-方钢管砂浆轴压试件的静力试验,分析了试件荷载-方钢管纵向应变(位移)曲线特点、破坏模态、极限承载力以及方钢管与BFRP的协同作用;采用ABAQUS模拟得到试件名义压应力-方钢管纵向应变曲线和变形模态等,并探讨了BFRP层数、方钢管截面高度等对试件静力性能的影响;基于性能分析,定义了BFRP-方钢管砂浆的轴压强度fbfscy,拟合得到其轴压试件极限承载力计算公式。应用此公式对隧道衬砌工程加固构件的极限承载力进行优化,以常用Ι16工字钢极限承载力替代为标准,考虑经济性和空间占用率,提出优化的加固构件参数建议(w=54.2 mm、m=3、fy=235 MPa、fcu=80 MPa、fbf=3092 MPa)。Abstract: In order to study the mechanical properties of basalt fiber reinforced polymer (BFRP)-confined square steel tubular mortar specimens under axial compression, static axial compression tests were conducted on nine specimens with different BFRP layers and section heights. The characteristics of the load-square steel tube longitudinal strain (displacement) curve, failure mode, ultimate bearing capacity, and synergistic reaction between the square steel tube and BFRP were analyzed. ABAQUS simulations were used to obtain the nominal compressive stress-square steel tube longitudinal strain curves and deformation modes of the specimens. The effects of BFRP layers, square steel tube cross-sectional height, and other factors on the static performance of the specimens were investigated and discussed. Additionally, the effects of the number of BFRP layers and the height of the square steel tube section on the static performance of the specimens were explored. Based on performance analysis, the axial compressive strength (fbfscy) of BFRP-confined square steel tubular mortar specimens was defined and fitted to obtain the formula for calculating their ultimate bearing capacity under axial compression. Applying this formula to optimize the ultimate bearing capacity of reinforced components in tunnel lining engineering, using the commonly-used Ι16 I-beam as the benchmark for replacement, and considering economic efficiency and space occupancy, this paper propose optimized parameters for reinforced components (w=54.2 mm、m=3、fy=235 MPa、fcu=80 MPa、fbf=3092 MPa).
-
Key words:
- static test /
- ABAQUS /
- formula for calculating ultimate bearing capacity /
- optimization
-
[1] 《中国公路学报》编辑部. 中国交通隧道工程学术研究综述·2022[J]. 中国公路学报,2022,35(4):1-40. [2] 刘光炎,王升福,吕亮,等. 我国城市隧道病害修复工程研究综述[J]. 青海交通科技,2021,33(4):135-141. [3] KHAN U H,MITRI H S,JONES D,et al. Full scale testing of steel arch tunnel supports[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1996,33(3):219-232. [4] 柳献,张乐乐,李刚,等. 复合腔体加固盾构隧道结构承载能力的试验研究[J]. 城市轨道交通研究,2015,18(7):52-57. [5] 柴昶,刘迎春. 钢结构工程中方(矩)形钢管的应用及其材性特点[J]. 钢结构,2009,24(11):53-60. [6] 郭寓岷,刘广立. 工程用冷弯方钢管材料与焊接性能试验研究[J]. 钢结构,1998,13(1):21-24,20. [7] 韩林海. 钢管混凝土结构:理论与实践[M]. 3版. 北京:科学出版社,2016. [8] 王罡,胡清,刘昌永,等. FRP缠绕方式对FRP约束钢管混凝土短柱轴压性能的影响研究[J]. 建筑结构学报,2021,42(增刊2):189-196. [9] 国家标准化管理委员会. 金属材料 拉伸试验 第1部分:室温试验方法:GB/T 228.1—2021[S]. 北京:中国标准出版社,2021. [10] 中华人民共和国住房和城乡建设部. 建筑砂浆基本性能试验方法标准:JGJ/T 70—2009[S].北京,中国建筑工业出版社,2009. [11] 国家标准化管理委员会. 土木工程结构用玄武岩纤维复合材料:GB/T 26745—2021[S]. 北京:,中国标准出版社,2021. [12] 王庆利. CFRP-钢管混凝土[M]. 北京:科学出版社,2017. -
点击查看大图
计量
- 文章访问数: 50
- HTML全文浏览量: 8
- PDF下载量: 3
- 被引次数: 0
登录
注册
E-alert
登录
注册
E-alert
下载: