Experimental Research on Mechanical Properties of Friction-Based Energy Dissipation Device for PC External Wallboards by Bolt Preload
-
摘要: 设计了一种摩擦耗能装置,它由中心钢板、一对夹紧角钢和单圆孔摩擦板组成。该装置应用于预制混凝土墙板和钢框架之间的4点连接吊装结构上部的连接处,用于摩擦耗能装置的摩擦板材料为A6061-T6铝合金板材。选取4组试件进行低周往复加载试验,各试件的螺栓预紧力分别为17.5,32.9,52.8,71.8 kN,研究了螺栓预紧力对摩擦耗能装置的滞回性能、初始刚度、临界滑动摩擦力、稳定性、耗能能力等的影响。研究结果表明:螺栓预紧力对摩擦耗能装置的力学性能具有决定性作用;试验加载结束后,L-B1试件摩擦板螺栓孔由于挤压变形,向一侧产生20 mm的压缩变形;与L-B1试件相比,L-B2~L-B4试件的初始刚度值变化范围在10%左右,因此,在多遇地震作用下摩擦耗能装置具有较为稳定的力学性能;随着螺栓预紧力的增大,与L-B1试件相比,L-B2~L-B4试件的平均峰值滑动摩擦力分别提高31%、39%、55%,临界滑动摩擦力分别提高32%、40%、52%,层间位移角分别提高99%、106%、110%,耗能能力分别降低25%、29%、39%。
-
关键词:
- 摩擦耗能装置 /
- A6061-T6铝合金板材 /
- 螺栓预紧力 /
- 耗能能力 /
- 稳定性
Abstract: A friction-based energy dissipation device consisting of a central steel plate, a pair of clamping angles and a single circular hole friction plate was designed. The device was applied to the upper joint of a 4-point connection lifting structure between a precast concrete wall panel and a steel frame, A6061-T6 aluminium alloy plates were used as friction plate material. Four sets of specimens were selected for quasi-static loading test, and the bolt preloads of specimens were 17.5, 32.9, 52.8, 71.8 kN, respectively, the effects of bolt preload on the hysteresis performance, initial stiffness, critical sliding friction, stability and energy dissipation capacity of the friction energy dissipation device were investigated; the results showed that the bolt preload force had a decisive role in the mechanical properties of the friction energy dissipation device; after the test loading, the bolt hole of the friction plate of specimen L-B1 had a compression deformation of 20 mm to one side due to extrusion deformation; compared with specimen L-B1, the initial stiffness values of specimens L-B2~L-B4 varied within 10%, therefore, the friction energy dissipation device had stable mechanical propertied. Compared with specimen L-B1, with the increase of bolt preload, the average peak sliding friction of specimens L-B2 to L-B4 increased by 31%, 39% and 55%, the critical sliding friction increased by 32%, 40% and 52%, the inter-storey drift angle increased by 99%, 106% and 110%, and the energy dissipation capacity decreased by 25%, 29% and 39%. -
[1] GRIGORIAN C E, YANG T S, POPOV E P. Slotted bolted connection energy dissipators[J]. Earthquake Spectra, 1993, 9(3):491-504. [2] PALL A S, MARSH C. Response of Friction damped braced frames[J]. Journal of the Structural Division, 1982, 108(6):1313-1323. [3] GRIGORIAN C E, CARL E. Slotted bolted connection energy dissipators[D]. California:University of California, 1992. [4] BHASKARARAO A V, JANGID R S. Seismic analysis of structures connected with friction dampers[J]. Engineering Structures, 2006, 28(5):690-703. [5] LATOUR M, RIZZANO G, SANTIAGO A, et al. Experimental response of a low-yielding, self-centering, rocking column base joint with friction dampers[J]. Soil Dynamics and Earthquake Engineering, 2019, 116:580-592. [6] TAKEUCHI T, HAJJAR J F, MATSUI R, et al, Local buckling restraint condition for core plates in buckling restrained braces[J].Journal of Constructional of Steel Research, 2010, 66(2):139-149. [7] RAMHORMOZIAN S, CLIFTON G C, MACRAE G A, et al. Stiffness-based approach for Belleville springs use in friction sliding structural connections[J]. Journal of Constructional Steel Research, 2017, 138:340-356. [8] TONIOLO G, DAL L B. Conceptual design and full-scale experimentation of cladding panel connection systems of precast buildings[J]. Earthquake Engineering&Structural Dynamics, 2017, 46(14):2656-2586. [9] 吴波,李惠,林立岩,等.东北某政府大楼采用摩擦阻尼器进行抗震加固的研究[J].建筑结构学报, 1998, 19(5):28-36. [10] 欧进萍,邹向阳,龙旭,等.振戎中学食堂楼耗能减震分析与设计(1):反应谱法[J].地震工程与工程振动, 2001, 21(1):109-114. [11] RAUT B R, JANGID R S. Seismic analysis of benchmark building installed with friction dampers[J]. The IES Journal Part A:Civil&Structural Engineering, 2014, 7(1):20-37. [12] BURWELL J T, STRANG C D. Metallic wear[J]. Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences, 1952, 212(1111):470-477. [13] 周新默.摩擦型节点板抗震设计及其对中心支撑钢框架的减震性能研究[D].大连:大连理工大学, 2022. [14] 韩建强,张会峰,乔杨.滑动长孔高强螺栓摩擦阻尼器滞回性能试验研究[J].建筑结构学报, 2018, 39(增刊2):315-320. [15] 师骁,王彦栋,曲哲,等.含摩擦阻尼器钢连梁的往复加载试验[J].工程力学, 2016, 33(增刊1):156-160. [16] 李国强,方明霁,刘宜靖,等.钢结构住宅体系加气混凝土外墙板抗震性能试验研究[J].土木工程学报, 2005(10):31-35, 42. [17] DAL L B, LAMPERTI T M. Sliding channel cladding connections for precast structures subjected to earthquake action[J]. Bulletin of Earthquake Engineering, 2018, 16(11):5621-5646. [18] DAL L B, BIANCHI S, BIONDINI F, et al. Dissipative diaphragm connections for precast structures with cladding panels under seismic action[C]//16th European Conference on Earthquake Engineering (16ECEE). Santiago, Chile:2018:1-12. [19] BELLERI A, BRUNESI E, NASCIMBENE R, et al. Seismic performance of precast industrial facilities following major earthquakes in the Italian territory[J/OL]. Journal of Performance of Constructed Facilities, 2015, 29(5)[2023-03-09]. https://doi.org/10.1061/(ASCE) CF.1943-5509.0000617. [20] BOURNAS D A, NEGRO P, TAUCER F F. Performance of industrial buildings during the Emilia earthquakes in Northern Italy and recommendations for their strengthening[J]. Bulletin of Earthquake Engineering, 2014, 12(5):2383-2404. [21] DAL L B, BIONDINI F, TONIOLO G. Experimental tests on multiple-slit devices for precast concrete panels[J]. Engineering Structures, 2018, 167:420-430. [22] DEL M E, FALSINI C, BOSCHI S, et al. An innovative cladding panel connection for RC precast buildings[J]. Bulletin of Earthquake Engineering, 2019, 17(2):845-865. [23] COLOMBO A, NEGRO P, TONIOLO G. The influence of claddings on the seismic response of precast structures:the Safecladding project[C]//Proceedings of the 2nd European Conference on Earthquake Engineering and Seismology. Christchurch:2014:25-29. [24] 隋伟宁,马勇,杨海涛,等. PC外挂墙板与钢框架摩擦耗能新型连接节点力学性能试验研究[J].工业建筑, 2023, 53(5):109-117. [25] 中华人民共和国住房和城乡建设部.预制混凝土外挂墙板应用技术标准:JGJ/T 458-2018[S].北京:中国标准出版社, 2018. [26] 中华人民共和国住房和城乡建设部.碟形弹簧:GB/T 1972-2005[S].北京:中国标准出版社, 2005. [27] 中华人民共和国住房和城乡建设部.建筑消能减震技术规程:JGJ 297-2013[S].北京:中国建筑工业出版社, 2013. [28] 中华人民共和国住房和城乡建设部.建筑抗震试验规程:JGJ/T 101-2015[S].北京:中国建筑工业出版社, 2015. [29] 贾斌,张其林,罗晓群,等.结构用铝合金材料循环加载性能研究[J].土木工程学报, 2018, 51(8):21-27, 36. [30] USAMI T, WANG C L, FUNAYAMA J. Developing high-performance aluminum alloy buckling-restrained braces based on series of low-cycle fatigue tests[J]. Earthquake Engineering&Structural Dynamics, 2012, 41(4):643-661. [31] 中国国家标准化管理委员会.铝合金建筑型材第1部分:基材:GB 5237.1-2008[S].北京:中国标准出版社, 2008. [32] 中国国家标准化管理委员会.低合金高强度结构钢:GB/T 1591-2008[S].北京:中国标准出版社, 2008. [33] 鲍登F P,泰伯D.固体的摩擦与润滑[M].北京:机械工业出版社, 1982. [34] 中华人民共和国住房和城乡建设部.建筑抗震设计标准:GB 50011-2010[S].北京:中国建筑工业出版社, 2016.
点击查看大图
计量
- 文章访问数: 54
- HTML全文浏览量: 6
- PDF下载量: 0
- 被引次数: 0