中国科技核心期刊
RCCSE中国核心学术期刊
JST China收录期刊
中国建筑科学领域高质量科技期刊分级目录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

北京高能同步辐射光源实验大厅在扫频激励下微振动水平的测试与分析

任锦龙 荣慕宁 邢云林 郑明 聂鑫 樊健生 刘宇飞

任锦龙, 荣慕宁, 邢云林, 郑明, 聂鑫, 樊健生, 刘宇飞. 北京高能同步辐射光源实验大厅在扫频激励下微振动水平的测试与分析[J]. 工业建筑, 2024, 54(1): 61-67. doi: 10.3724/j.gyjzG23022008
引用本文: 任锦龙, 荣慕宁, 邢云林, 郑明, 聂鑫, 樊健生, 刘宇飞. 北京高能同步辐射光源实验大厅在扫频激励下微振动水平的测试与分析[J]. 工业建筑, 2024, 54(1): 61-67. doi: 10.3724/j.gyjzG23022008
REN Jinlong, RONG Muning, XING Yunlin, ZHENG Ming, NIE Xin, FAN Jiansheng, LIU Yufei. Micro Vibration Test and Analysis in Experiment Hall of Beijing High Energy Photon Source Facility Induced by Artificial Frequency Sweep Excitation[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(1): 61-67. doi: 10.3724/j.gyjzG23022008
Citation: REN Jinlong, RONG Muning, XING Yunlin, ZHENG Ming, NIE Xin, FAN Jiansheng, LIU Yufei. Micro Vibration Test and Analysis in Experiment Hall of Beijing High Energy Photon Source Facility Induced by Artificial Frequency Sweep Excitation[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(1): 61-67. doi: 10.3724/j.gyjzG23022008

北京高能同步辐射光源实验大厅在扫频激励下微振动水平的测试与分析

doi: 10.3724/j.gyjzG23022008
基金项目: 

国家自然科学基金创新研究群体项目(52121005)。

详细信息
    作者简介:

    任锦龙,教授级高级工程师,主要从事混凝土结构施工建造等技术研究。

    通讯作者:

    樊健生,主要从事钢-混凝土组合结构等研究,fanjsh@mail.tsinghua.edu.cn。

Micro Vibration Test and Analysis in Experiment Hall of Beijing High Energy Photon Source Facility Induced by Artificial Frequency Sweep Excitation

  • 摘要: 微振动控制是精密大科学装置在建设过程中的重点关注对象之一,北京高能同步辐射光源(HEPS)项目采用浇筑1 m厚钢筋混凝土结构底板加3 m厚的素混凝土垫层的方式来实现项目要求的微振动控制目标。报道了主体结构完工后,在北京高能同步辐射光源建设施工现场开展的1~100 Hz激振器扫频激励试验。通过对试验中实测得到的振动信号在时域和频域内进行分析,评估北京高能同步辐射光源主体结构完成后实验大厅底板的微振动水平和微振动控制能力。试验结果表明:在1~100 Hz的振动激励下,实验大厅底板表现出良好的振动控制能力。
  • [1] ERIKSSON M, van der VEEN J.F, & QUITMANN C. Diffraction- limited storage rings-a window to the science of tomorrow [J]. Journal of Synchrotron Radiation, 2014, 21: 5837-5842.
    [2] PRADO G, ARTHUZZI J.C.L, OSES G. L, et al. Synchrotron radiation in palaeontological investigations: examples from Brazilian fossils and its potential to South American palaeontology [J/OL]. Journal of South American Earth Sciences, 2021, 108[2021-05-21]. https://doi.org/10.1016/j.jsames.2020.102973.
    [3] 姜晓明, 王九庆, 秦庆, 等. 中国高能同步辐射光源及其验证装置工程[J]. 中国科学: 物理学力学天文学, 2014, 44(10): 1075-1094.
    [4] CYRANOSKI D. China joins world-class synchrotron club [J]. Nature, 2009, 459: 724316-724317.
    [5] GORDON C G. Generic criteria for vibration sensitive equipment [C]//Conference on Optomechanical Engineering and Vibration Control. [s.l.]: Society of Photo-optical Instrumentation Engineers, 1999: 71-75.
    [6] AMICK H. On generic vibration criteria for advanced technology facilities [J]. Journal of the Institute of Environmental Sciences, 1997, 40: 535-544.
    [7] SERY A, NAPOLY O. Influence of ground motion on the time evolution of beams in linear colliders [J]. Physical Review E, 1996,53: 55323-55337.
    [8] OKADA H. The microtremor survey method, Geophysical Monograph Series Number 12[M]. [s.l.]: Society of exploratiom Geophysicists, 2003.
    [9] TOKSÖZM N. & Lacoss R.T. Microseisms: mode structure and sources [J]. Science, 1968, 159: 3817872- 3817873.
    [10] MILLER G F, PURSEY H. On the Partition of Energy between Elastic Waves in a Semi-Infinite Solid [C]//Proceedings of The Royal Society A: Mathematical. Physical and Engineering Sciences. [s.l.]: Royal Society, 1955:233: 55-69.
    [11] MILLER G F, PURSEY H. The field and radiation impedance of mechanical radiators on the free surface of a semi-infinite isotropic solid [C]//Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences. [s.l.]: Royal Society, 1954: 521-541.
    [12] CELEBI E, FIRAT S, BEYHAN G, et al. Field experiments on wave propagation and vibration isolation by using wave barriers [J]. Soil Dynamics and Earthquake Engineering, 2009, 29: 5824-5833.
    [13] DIJCKMANS A, EKBLAD A, SMEKAL A, et al. Efficacy of a sheet pile wall as a wave barrier for railway induced ground vibration [J]. Soil Dynamics and Earthquake Engineering, 2016: 84: 55-69.
    [14] TOYGAR O, ULGEN D. A full-scale field study on mitigation of environmental ground vibrations by using open trenches[J/ OL]. Building and Environment, 2021, 203[2021-06-25]. https://doi.org/10.1016/j.jsames. 2020. 108070.
    [15] 刘晶磊, 刘鹏泉, 尚康君, 等. 层状地基环形沟隔振效果影响因素分析[J]. 地震工程学报, 2021, 43(6): 1394-1401

    , 1418.
    [16] 肖慧娟, 董尘. 高速铁路运行引发场地振动的空沟隔振分析[J]. 地震工程学报, 2021, 43(6): 1419-1428.
    [17] 罗文俊, 曹浩. 空沟和废弃轮胎填充沟隔振效果的有限元分析[J]. 建筑结构, 2020, 50(增刊2): 360-365.
    [18] N SIMOS, H AMICK, and A SOUEID, et al.NSLS-II ground vibration stability studies and design implementation [J], Synchrotron Radiation News 32, 5412(2019).
    [19] STUDER J A, PANDURI R, HP H. Synchrotron Facilities: Meeting Stringent Deformation and Vibration Criteria [C]//International Conferences On Case Histories in Geotechnical Engineering. Virginia, USA: Missouri University of Science and Technology, 2008: 15.
    [20] RODRIGUES F, RODRIGUESA R D, SILVA O H V, et al. Sirius Stability: From Foundation to Girders [J]. Synchrotron Radiation News, 2019,32: 520-526.
    [21] 中华人民共和国住房和城乡建设部. 电子工业防微振工程技术规范: GB 51076—2015[S]. 北京: 中国计划出版社, 2015.
    [22] HARRIS J G. Elastic waves at high frequencies: techniques for radiation and diffraction of elastic and surface waves[M]. [s.l.]:Cambridge University Press, 2010: 77-80.
  • 加载中
计量
  • 文章访问数:  82
  • HTML全文浏览量:  3
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-20
  • 网络出版日期:  2024-02-27

目录

    /

    返回文章
    返回