Experimental Research on Bearing Capacity of Composite Slab Units Composed of Lightweight Concrete and Thin-Walled Steel Framework Under Static Loading
-
摘要: 对具有3种不同内填料构造特征的轻质组合板单元试件开展了静载试验研究。组合板单元由薄壁钢骨架和配有钢筋或钢丝网片的内填陶粒混凝土组成,可通过板单元之间的组装形成一种新型轻质装配式楼板。研究表明:该组合板单元具有较强的承载能力和变形能力;当试件内的混凝土出现底部贯通裂缝、薄壁钢构件严重屈曲、支座端混凝土碎裂且试件竖向位移达到L/45(L为板的跨度)时,未见填充于薄壁钢骨架内部的混凝土被作用于板单元区格中心处的集中荷载推出;在板单元的区格中适当配置钢筋和铺设钢丝网片均可改善组合板单元试件的承载性能;在组合板单元试件的区格内增加配筋数量不仅可提高试件的整体弹性刚度,且可增强其变形能力;而在试件的骨架区格内配置钢丝网片,则更有利于提高组合板单元的极限荷载而非弹性刚度。Abstract: Static load tests were carried out on three types of lightweight composite slab units with different inner packing structures. The composite slab unit consists of a thin-walled steel framework filled with steel rebars/wire mesh reinforced ceramsite concrete. These units can be assembled to form a new type of lightweight prefabricated floor slab. The test results showed that the composite slab unit exhibitsed significant bearing capacity and deformation capacity. When specimens exhibited through cracking at the concrete bottom, severe buckling of thin-walled steel members, and crushing of the support-end concrete, with the vertical displacement of specimens reaching L/45 (L = span length), the concrete filled in the thin-walled steel framework was not pushed out by the concentrated load acting on the center of the grid; the bearing capacity of the composite slab unit was improved by properly arranging the steel rebars and laying the steel wire mesh in the area grid; increasing the reinforcement ratio in the area of the composite slab unit not only improved the overall elastic stiffness but also enhanced the deformation capacity of the specimens; the increase of the ultimate load of the composite slab unit was greater than the increase of the elastic stiffness when the steel wire mesh was arranged in the framework area of the specimens.
-
Key words:
- composite slab unit /
- static loading test /
- thin-walled steel /
- lightweight concrete /
- bearing capacity
-
[1] 尹犟. 压型钢板-轻集料混凝土组合楼板受力性能研究[D]. 长沙:长沙理工大学,2004. [2] 潘红霞,何敏娟,蔡飞,等. 压型钢板-混凝土组合楼板纵向受剪承载力试验研究[J]. 建筑结构学报,2007,28(3):116-121. [3] 张少玉. 压型钢板-轻骨料混凝土组合楼板力学性能非线性分析[D]. 北京:北方工业大学,2010. [4] 周绪红,贾子文. 冷弯薄壁型钢-混凝土组合楼盖受弯承载力试验研究[J]. 建筑结构学报,2010,31(7):13-22. [5] 贾子文,周绪红,刘永健. 冷弯薄壁型钢-混凝土组合楼盖受弯承载力影响因素分析[J]. 建筑结构学报,2013,34(4):135-143. [6] 蒯楠,郑晓燕,李新,等. 压型钢板-轻骨料混凝土组合板的纵向抗剪性能[J]. 林业工程学报,2016,1(5):126-132. [7] 王新堂,杨景,王万祯. 开孔薄壁钢梁-轻骨料混凝土装配式组合楼板受力性能试验研究[J]. 建筑结构学报,2016,37(5):39-47. [8] 孙岳阳,赵新铭,赵林,等. 压型钢板-轻骨料混凝土组合楼板受弯承载力试验研究[J]. 建筑结构,2017,47(16):70-73. [9] 李帼昌,郭丰伟,杨志坚,等. 开口型压型 钢板-混凝土组合楼板抗弯承载力试验研究[J]. 建筑钢结构进展,2018,20(4):18-20. [10] HOLOMEK J,BAJER M. Experimental and numerical investigation of composite action of steel concrete slab[J]. Procedia Engineering,2012,40:143-147. [11] YANG Y,LIU R Y,HUO X D. Static experiment on mechanical behavior of innovative flat steel plate-concrete composite slabs[J]. International Journal of Steel Structures,2018,18(2):473-485. [12] MIGUEL P,RUI S. Contribution of steel sheeting to the vertical shear capacity of composite slabs[J]. Journal of Constructional Steel Research,2019,161:275-284. [13] ZHANG Z Z,WANG J F,XIAO Y M,et al. Experimental and analytical assessments on flexural behaviour of CTLST composite beams[J]. Thin-Walled Structures,2019,138:15-31. [14] MOHAMMAD M R,UY B,MIRZA O. Experimental and numerical study of end anchorage in composite slabs[J]. Journal of Constructional Steel Research,2015,115:372-386. [15] 中华人民共和囯住房和城乡建设部. 混凝土物理力学性能试验方法标准:GB/T 50081—2019[S]. 北京:中国建筑工业出版社,2019. [16] 全国钢标准化技术委员会. 金属材料 拉伸试验 第1部分:室温试验方法:GB/T 228.1—2021[S]. 北京:中国标准出版社,2021. -
点击查看大图
计量
- 文章访问数: 49
- HTML全文浏览量: 17
- PDF下载量: 1
- 被引次数: 0
登录
注册
E-alert
登录
注册
E-alert
下载: