Dynamic Response Characteristics of Ice-Shedding on Multi-Span Transmission Lines Under Non-Uniform Icing Conditions
-
摘要: 为研究不均匀覆冰对导线脱冰动力响应的影响,建立连续三档绝缘子串-导线体系有限元模型,定义覆冰段位置、覆冰段长度以及基本覆冰厚度3个特征参数以表征不均匀覆冰工况特性,分析非均匀覆冰导线在不同覆冰特性和线路参数下的脱冰跳跃动力响应,研究各参数对最大冰跳幅值和最大不平衡张力的影响规律。结果表明:脱冰档总覆冰量相同时,相对于均匀覆冰,非均匀覆冰导线会产生更剧烈的脱冰响应;不均匀覆冰段的最不利位置与档距大小有关,当脱冰档档距小于等于700 m时,不均匀覆冰段的位置越靠近跨中,导线的脱冰跳跃高度和不平衡张力越大。当脱冰档档距大于700 m时,覆冰段位置中点和左侧挂点的水平距离与档距之比为0.3时更不利。Abstract: A finite element model of the insulator-string-conductor system was established to investigate the influence of uneven ice-coating on the dynamic responses of iced transmission lines subjected to ice-shedding. Three parameters of ice section location, ice section length, and basic ice thickness were defined to characterize the non-uniform ice-coating conditions. The ice-shedding dynamic responses of non-uniformly iced conductors under different icing characteristics and line parameters were analyzed. Furthermore, the influence law of each parameter on the maximum ice-jump amplitude and the maximum unbalanced tension was studied. The numerical results showed that for the same total ice load on the ice-shedding span, non-uniformly iced conductors generated more severe ice-shedding responses compared to uniformly iced conductors; the most unfavorable position of the non-uniformly iced segment was related to the span length. When the ice-shedding span was 700 m or less, the closer the position of the non-uniformly iced segment was to the mid-span, the greater the conductor’s jump height and unbalanced tension became. When the length of ice-shedding span exceeded 700 m, the condition became more unfavorable if the ratio of the horizontal distance (between the midpoint of the iced segment and the left suspension point) to the span length was 0.3.
-
Key words:
- transmission lines /
- ice-shedding jumping /
- non-uniform icing /
- dynamic response /
- most unfavorable case
-
[1] 杨靖波, 李正, 杨风利, 等. 2008年电网冰灾覆冰及倒塔特征分析[J]. 电网与水力发电进展, 2008(4): 4-8. [2] 黎湘康, 魏长喜. 500 k V二普三线不均匀覆冰的影响及对策[J]. 四川电力技术, 2002(2): 21-22. [3] 张健, 李小亭, 张博, 等. 新疆地区750 k V线路覆冰与脱冰事故分析[J]. 浙江电力, 2020, 39(10): 58-62. [4] 姚陈果, 毛峰, 许道林, 等. 不均匀覆冰输电塔线体系力学特性[J]. 高电压技术, 2011, 37(12): 3084-3092. [5] MORGAN V T, SWIFT D A. Jump height of overhead-line conductors after the sudden release of ice loads[J]. Proceedings of the Institution of Electrical Engineers, 1964, 111(10): 1736-1746. [6] 陈勇, 胡伟, 王黎明, 等. 覆冰导线脱冰跳跃特性研究[J]. 中国电机工程学报, 2009, 29(28): 115-121. [7] 胡伟, 陈勇, 蔡炜, 等. 1000 k V交流同塔双回输电线路导线脱冰跳跃特性[J]. 高电压技术, 2010, 36(1): 275-280. [8] ROSHAN F M. Dynamic response of overhead transmission lines to ice shedding[D]. Canada: Universitédu Québecà Chicoutimi, 1995. [9] ROSHAN F M, MCCLURE G. Numerical modelling of the dynamic response of ice-shedding on electrical transmission lines[J]. Atmospheric Research, 1998, 46(1): 1-11. [10] 翟彬, 张思祥, 刘凯铭, 等. 输电线路多分裂导线脱冰动力响应分析[J]. 山东大学学报(工学版), 2021, 51(4): 111-117, 123. [11] 王凌旭, 姚瑶, 张有佳, 等. 不同覆冰状态下输电塔线体系脱冰及断线受力分析[J]. 工业建筑, 2019, 49(12): 7-12. [12] 晏致涛, 李孟珠, 熊辉, 等. 考虑高差覆冰输电线路链式脱冰振动[J]. 湖南大学学报(自然科学版), 2020, 47(3): 115-121. [13] 王黎明, 曹露, 高亚云, 等. 输电线路非均匀脱冰严重工况的规律[J]. 高电压技术, 2018, 44(8): 2442-2449. [14] 王金锁, 刘美瑶, 岳华刚, 等. 不同覆冰形式的导线脱冰动力响应研究[J]. 振动与冲击, 2021, 40(20): 193-199. [15] 周文武, 张小力, 江岳, 等. 单档不均匀覆冰下架空线路不平衡张力及形变特性研究[J]. 电网与清洁能源, 2021, 37(9): 45-50. [16] 刘文峰, 袁翔, 何宝成, 等. 不均匀覆冰对110 k V杆塔的受力影响分析[J]. 广东电力, 2019, 32(11): 136-143. [17] 孟遂民, 孔伟. 架空输电线路设计[M]. 北京: 中国电力出版社, 2007. [18] MIRSHAFIEI F, MCCLURE G, FARZANEH M. Modelling the dynamic response of iced transmission lines subjected to cable rupture and ice shedding[J]. IEEE Transactions on Power Delivery, 2013, 28(2): 948-954. [19] MENG X B, WANG L M, HOU L, et al. Dynamic characteristic of ice-shedding on UHV overhead transmission lines[J]. Cold Regions Science and Technology, 2011, 66(1): 44-52. [20] 沈国辉, 袁光辉, 邢月龙, 等. 导线覆冰脱落的数值模拟和参数分析[J]. 振动与冲击, 2012, 31(5): 55-59. -
点击查看大图
计量
- 文章访问数: 30
- HTML全文浏览量: 8
- PDF下载量: 1
- 被引次数: 0
登录
注册
E-alert
登录
注册
E-alert
下载: