Experimental Research on Macro and Micro Mechanical Characteristics of Photovoltaic Support Steel Piles
-
摘要: 太阳能光伏发电是清洁能源主要的发展方向之一,因此对于光伏支架基础的选择尤为重要。型钢桩因其贯穿能力强、质量轻、便于运输等优势而被广泛用于沙漠地区的光伏发电工程。为揭示光伏支架型钢桩的受力特性,通过界面剪切试验从宏、细观的角度揭示不同密实度和围压下桩-土界面摩擦特性。同时,基于界面剪切试验结果开展型钢桩拉拔试验,从宏观角度分析不同围压条件下型钢桩承载特性及桩身内力分布规律。结果表明:型钢桩与砂土接触面剪切过程呈现出软化特性,型钢桩与桩周土体接触面摩擦角大于桩周土体自身内摩擦角,且与砂土密实度呈正相关;型钢桩侧摩阻力发挥程度与桩周土体间相对位移具有显著的相关性,当相对位移为8~11 mm时达到峰值强度;型钢桩截面形状对其承载特性有明显影响,H型钢桩承载力大于C型和槽型,且H型钢桩腹板内侧摩阻力大于翼缘外部。Abstract: Solar photovoltaic power generation is one of the main development directions of clean energy, so the selection of photovoltaic support foundation is particularly important. Sectional steel piles have been widely used in photovoltaic power generation projects in desert areas because of their strong penetration capacity, light weight and convenient transportation. Considering the stress characteristics of photovoltaic supports, the frictional characteristics of pile-soil interface under different compactness and confining pressures were revealed through large-scale direct shear tests. Based on the results of large-scale direct shear tests, the pull-out tests of sectional steel piles were carried out to explore the bearing characteristics and internal force distribution of piles under different pile types and confining pressures. The research results showed that the shear process of the contact surface between the steel pile and sandy soil presented softening characteristics, and the friction angle between the steel pile and its surrounding soil was greater than the soil’s internal friction angle, and became more obvious with the increase of the compactness of the soil; there was a good correlation between the ultimate lateral friction of sectional steel piles and the relative displacement of soil around the piles, and the peak strength occurred at 8 to 11 mm relative displacement in sandy soil. The results of pull-out tests presented that the section shape of sectional steel piles had significant influence on its bearing characteristics, the bearing capacity of H-shaped piles was higher than those of C-shaped piles and channel shaped piles, and the friction resistance at the inside web of H-shaped piles was greater than the outside flange.
-
[1] 中商产业研究院. 2021年中国光伏产业市场前景及投资研究报告[J]. 电器工业,2021(4):12-23. [2] 孔洋,阮怀宁,黄雪峰,等. 光伏支架抗拔锚固微型桩作用机理研究[J]. 太阳能学报,2020,41(2):262-267. [3] 陈艳,曹晓宁,兰云鹏. 大型光伏电站中不同支架方案比较分析[J]. 电气技术,2013(8):16-19,23. [4] 闫健,刘健全. 大型光伏电站扰动区支架基础选型的探讨[J]. 太阳能,2013(23):36-39. [5] SEO H Y,YILDIRIM Z I,PREZZI M. Assessment of the axial load response of an H pile driven in multilayered soil[J]. Journal of Geotechnical and Geoenvironmental Engineering,2009,135(12):1789-1804. [6] SO A K,NG C W. Performance of long-driven H-piles in granitic saprolite[J]. Journal of Geotechnical and Geoenvironmental Engineering,2009,135(2):246-258. [7] 王艳华. H型钢桩静载与动载承载力试验分析[J]. 公路,2014(11):110-113. [8] 郭朋鑫. 桥梁H型钢桩抗震性能研究[D]. 长沙:湖南大学,2015. [9] 钱建固,陈宏伟,贾鹏,等. 注浆成型螺纹桩接触面特性试验研究[J]. 岩石力学与工程学报,2013,32(9):1744-1749. [10] 李永辉,王卫东,黄茂松,等. 超长灌注桩桩-土界面剪切试验研究[J]. 岩土力学,2015,36(7):1981-1988. [11] 龚辉,赵春风,陶帼雄,等. 应力历史对黏土-混凝土界面剪切特性的影响研究[J]. 岩石力学与工程学报,2011,30(8):1712-1719. [12] 刘丰铭. 砂土中考虑土体径向卸荷效应的桩端后注浆抗压桩竖向承载机制[D]. 上海:同济大学,2017. -
点击查看大图
计量
- 文章访问数: 53
- HTML全文浏览量: 14
- PDF下载量: 3
- 被引次数: 0
登录
注册
E-alert
登录
注册
E-alert
下载: