Research on Influence Laws of Vibration by Rotary Drilling During Foundation Excavation on Surrounding Buildings and the Environment
-
摘要: 为研究基坑旋挖钻进施工振动对周边建筑及环境的影响,以深圳地铁16号线5号综合井工程为依托,对基坑旋挖钻进施工过程中周边地表及建筑物的振动进行现场监测,通过对监测振动数据的时域、频域分析,得出:旋挖钻进引发的周边地表及建筑振动以竖向为主;楼板质点的竖向峰值振动速度及振动加速度级整体随楼层升高呈线性增长趋势;振动加速度三分之一倍频程谱中,竖向振动最大加速度随楼层升高呈增长趋势;由旋挖钻进引发的楼板水平向振动和竖向振动以低中频为主,主要集中在4~40 Hz;周边建筑内水平向和竖向振动最大加速度所对应的中心频率范围为8~25 Hz;除建筑物楼顶测点及周边地表测点处竖向振级最大值大于75 dB以外,其他测点处竖向振级最大值均低于75 dB。研究成果对于基坑旋挖钻进施工振动对周边建筑物及环境的影响分析具有一定的指导意义。Abstract: To study the influence law of vibration induced by rotary drilling during foundation excavation on surrounding buildings and the environment, the vibration of the adjacent ground and buildings were monitored under construction of rotary drilling for foundation excavation of the comprehensive well 5 in Shenzhen metro line 16. The following main conclusions were drawn based on time and frequency domain analysis on the field-recorded vibration data. Firstly, the vertical vibration of surrounding buildings caused by rotary drilling was stronger than horizontal vibration. Secondly, the vertical peak particle velocity (PPV) and the vertical vibration acceleration level on the floor of adjacent buildings linearly increased as the floor rosed. Thirdly, in the one-third octave spectrum of vibration acceleration, the maximum vibration acceleration in the vertical direction increased with the increase in the floor. The floor vibration in vertical and horizontal directions caused by rotary drilling was mainly in low and medium frequencies, mainly concentrated in 4 to 40 Hz. And the range of center frequency corresponding to the horizontal and vertical peak vibration acceleration of the nearby buildings was in 8 to 25 Hz. Finally, except the maximum vertical vibration level on the roof and the surrounding ground were larger than 75 dB, the maximum vertical vibration level measured at other observation points was below 75 dB. The relevant findings were of guiding significance for analysis of the impact of vibration induced by rotary drilling on surrounding buildings and the environment.
-
[1] XIE H P, ZHU J B, ZHOU T, et al. Conceptualization and preliminary study of engineering disturbed rock dynamics[J/OL]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2020, 6[2022-12-20]. https://doi.org/10.1007/s40948-020-00157-x. [2] 张忆, 杨文东, 彭振, 等. 地铁隧道爆破开挖对高层框架结构的动态响应[J]. 爆破, 2018, 35(1): 147-153. [3] 张玉琦, 蒋楠, 周传波, 等. 地铁基坑爆破振动作用邻近高层框架建筑物结构动力响应[J]. 煤炭学报, 2019, 44(增刊1): 118-125. [4] 李兴高, 孙河川. 地铁施工环境影响定量风险指标研究[J]. 岩土力学, 2009, 30(9): 2733-2736. [5] 侯公羽, 刘伟, 李乐, 等. 多风险因素耦合的地铁施工安全系统脆弱性分析[J]. 土木工程学报, 2022, 55(2): 111-119. [6] 王栋, 何历超, 王凯. 钻爆法施工对邻近埋地管道影响的现场实测与数值模拟分析[J]. 土木工程学报, 2017, 50(增刊2): 134-140. [7] 冯小冬. 地铁钻爆法施工对邻近建筑物的振动响应预测[J]. 地下空间与工程学报, 2021, 17(2): 580-589. [8] 李胜林, 方真刚, 杨瑞, 等. 浅埋地铁隧道爆破施工引起的地表振动规律分析[J]. 爆破, 2019, 36(2): 111-116, 130. [9] OZER U. Environmental impacts of ground vibration induced by blasting at different rock units on the Kadikoy-Kartal metro tunnel[J]. Engineering Geology, 2008, 100(1/2):82-90. [10] FAKHIMI A, LANARI M. DEM-SPH simulation of rock blasting [J]. Computers and Geotechnics, 2014, 55: 158-164. [11] 张震, 周传波, 路世伟, 等. 超浅埋地铁站通道爆破暗挖地表振动传播特征[J]. 中南大学学报(自然科学版), 2017, 48(8): 2119-2125. [12] 陈士海, 刘小鸣, 张子华, 等. 隧道掘进爆破诱发隧道后方开挖段地表振动效应分析[J]. 岩土工程学报, 2020, 42(10): 1800-1806. [13] 袁玉宝. 爆破振动下高层建筑振动传播规律研究[D]. 贵阳:贵州大学, 2020. [14] 陶连金, 郭飞, 黄俊, 等. 砂卵石地层盾构施工诱发振动环境影响试验研究[J]. 振动与冲击, 2015, 34(16): 213-218. [15] 王鑫, 韩煊, 周宏磊. 中心城区地铁盾构施工引起的环境振动响应研究[J]. 土木工程学报, 2015, 48(增刊2): 309-314. [16] 郭飞, 陶连金, 孔恒, 等. 兰州砂卵石地层盾构施工振动传播及衰减特性分析[J]. 岩土力学, 2018, 39(9): 3377-3384. [17] 赵凯, 王秋哲, 毛昆明. 地铁运行引起建筑物振动的三维有限元分析[J]. 防灾减灾工程学报, 2019, 39(2): 209-216. [18] 花雨萌, 谢伟平, 陈斌. 地铁振动对建筑物竖向楼层响应的影响研究[J]. 建筑结构学报, 2023, 44(3): 122-129. [19] 于蕾. 爆破振动对多层建筑物的安全影响[J]. 铁道工程学报, 2015, 32(3): 86-89. [20] 雷振, 贺路, 吴桂义, 等. 高层建筑在爆破地震波作用下振动传播规律[J].工程爆破, 2020, 26(3): 16-22. [21] 董霜, 朱元清. 地铁振动环境及对建筑影响的研究概况[J]. 噪声与振动控制, 2004(2): 1-4. [22] 高广运, 陈娟, 朱林圆. 上海地铁荷载作用下邻近建筑物振动响应分析[J]. 噪声与振动控制, 2016, 36(6): 136-141. [23] 王新宇, 邵珠山, 乔汝佳. 小净距下穿铁路隧道爆破震动的响应研究[J]. 应用力学学报, 2013, 122(4): 527-532, 645. [24] 刘彦涛. 下穿寺庙隧道爆破振动影响的数值模拟与分析[J]. 西安建筑科技大学学报(自然科学版), 2021, 53(2): 160-166. [25] 中华人民共和国国家质量监督检验检疫总局.机械振动与冲击 人体暴露于全身振动的评价 第1部分: 一般要求:GB/T 13441.1—2007[S].北京:中国标准出版社, 2007. [26] 国家环境保护局. 城市区域环境振动测量方法: GB/T 10071—1988[S]. 北京:中国标准出版社, 1988. [27] 国家环境保护局. 城市区域环境振动标准: GB 10070—1988[S]. 北京:中国标准出版社, 1988. [28] 刘增伟, 蔡袁强, 史吏, 等. 爆破引起阀井桩基及阀井上部结构振动实测研究[J]. 岩石力学与工程学报, 2019, 38(增刊2): 3338-3345. [29] 祝文化, 宋成梓, 陈卫雄, 等. 复杂环境下地铁车站基坑爆破振动效应的试验研究[J]. 爆破, 2009, 26(2): 99-101, 107. [30] 张开伟, 杨灵杰, 王世淼, 等. 城市地铁地下轨道振动对周边建筑的影响分析[J]. 工程地球物理学报, 2020, 17(1): 127-134. [31] 戚柳飞, 王安斌, 谢蓥松, 等. 地铁车辆经过不同轨道结构时对地面振动的影响研究[J]. 噪声与振动控制, 2019, 39(6): 147-152. [32] 邹超, 汪益敏, 汪朝晖, 等. 地铁车辆段咽喉区地面振动传播规律实测与分析[J]. 振动与冲击, 2015, 34(16): 200-206.
点击查看大图
计量
- 文章访问数: 10
- HTML全文浏览量: 1
- PDF下载量: 0
- 被引次数: 0