Effects of Interface Roughness on Shear Performance of Composite Beams
-
摘要: 为研究叠合梁结合面不同粗糙程度及结合面位置对叠合梁抗剪性能的影响,进行了5个叠合梁试件和1个整浇梁试件的抗剪性能试验。对比分析了各试件的破坏特征、损伤演化过程、荷载-挠度曲线、承载力和荷载-纵筋应变曲线。试验结果表明:结合面粗糙程度对叠合梁试件初始裂缝的开展影响较小,对试件结合面裂缝的出现及发展具有显著影响,结合面越粗糙,叠合梁结合面错动裂缝越短、损伤越小,试件峰值荷载越大;结合面位置越靠近受压区,结合面开裂位移和荷载越小、错动裂缝越长,对试件整体性影响越大,试件峰值承载力显著降低。采用现行规范和美规对试件进行了抗剪承载力计算,结果表明:结合面经过粗糙处理的叠合梁试件抗剪承载力计算结果相对保守,且当叠合梁结合面施工状态较差、结合面光滑或不做粗糙处理时,按照规范进行设计,计算结果偏不安全。Abstract: To study the effects of the roughness of the composite beam joint surface and the position of the joint surface on the shear performance of the composite beam, shear tests were conducted on five composite beam specimens and one monolithic beam specimen. The failure characteristics, damage evolution process, load-deflection curve, bearing capacity, and load-longitudinal strain curve of each specimen were compared and analyzed. The test results showed that the roughness of the joint surface had little influence on the initial crack development of composite beam specimens but a significant influence on the appearance and development of joint surface cracks. The coarser joint surface led to shorter misaligned cracks, less damage, and a higher peak load in the composite beam specimens. When the joint surface was closer to the compression zone, it led to a smaller cracking displacement and lower cracking load at the joint surface, as well as longer misaligned cracks. These factors significantly influenced the integrity of the specimens, and the peak bearing capacity of the specimens decreased significantly. The shear bearing capacity of the composite beam specimens with rough treatment of the joint surface was calculated according to the current Chinese and American codes. The calculated shear bearing capacity for the composite beam specimens with rough treatment was relatively conservative. However, when the construction state of the composite beam joint surface was poor—such as when the joint surface was smooth or lacked rough treatment—the design could not be carried out in accordance with the code, as the calculation results would be unsafe.
-
Key words:
- composite beam /
- joint surface /
- roughness /
- shear performance /
- shear bearing capacity
-
[1] 周旺华. 现代混凝土叠合结构[M]. 北京:中国建筑工业出版社,1998. [2] 赵顺波. 混凝土叠合结构设计原理与应用[M]. 北京:中国水利电力出版社,2001. [3] Committee ASCE-ACI 426. The shear strength of reinforced concrete members[J]. Journal of the Structural Division,1973,99(6):1011-1187. [4] 谢慧才,李庚英,熊光晶. 新老混凝土界面粘结力形成机理[J]. 硅酸盐通报,2003(3):7-10. [5] 张雷顺,闫国新,张晓磊. 新老混凝土切槽法结合面抗剪性能试验研究分析[J]. 工业建筑,2007,37(6):101-103. [6] 李平先,张雷顺,赵国藩. 新老混凝土粘结面的抗冻剪切性能试验研究[J]. 水利学报,2005,36(3):339-344. [7] 林拥军,徐文强,张显昭,等. 设置锚筋的新老混凝土结合面抗剪机理及黏结强度计算[J]. 工业建筑,2021,51(6):72-83. [8] 徐文强. 新老混凝土结合面抗剪强度计算方法与粘结-滑移本构模型[D]. 成都:西南交通大学,2021. [9] 黄选明,张新江,刘昊,等. 预制混凝土构件叠合面劈裂抗拉性能试验[J]. 建筑科学,2019,35(3):70-76. [10] EMMONS P H,VAYASBURD A M,MCDONALD J E. Concrete repair in the future turn of the century-any problems[J]. Concrete International,1994,16(3):47-55. [11] 李庚英,谢慧才,熊光晶. 混凝土修补界面的微观结构及与宏观力学性能的关系[J]. 混凝土,1999(6):13-18. [12] GOHNERT M. Horizontal shear transfer across a roughened surface[J]. Cement and Concrete Composites,2003,25(3):379-385. [13] LAWRENCE F K,ADAM S. Interface shear in high strength composite T-beams[J]. PCI Journal,2004,49(4):102-110. [14] 徐铮弢,冯庆兴,徐宏广,等. 带缺陷钢筋混凝土叠合梁抗弯性能的试验研究[J]. 浙江科技学院学报,2020,32(4):283-290. [15] 冯庆兴,徐铮弢,徐宏广,等. 带缺陷钢筋混凝土叠合梁斜截面抗剪性能试验研究[J]. 建筑结构,2021,51(11):88-93. [16] 林皇诚. 带缺陷T形截面钢筋混凝土叠合梁力学性能研究[D]. 杭州:浙江科技学院,2022. [17] 刘文杰. 含裂隙无腹筋梁的抗剪性能及碳纤维布加固研究[D]. 济南:山东大学,2021. [18] 张建伟,张德利,冯曹杰,等. HRB600级钢筋高强混凝土无腹筋梁受剪试验研究[J]. 工程力学,2020,37(增刊1):275-281. [19] 易伟建,丁雅博,陈晖. 轻骨料混凝土无腹筋梁受剪性能试验研究[J]. 建筑结构学报,2017,38(6):123-132. [20] 中华人民共和国住房和城乡建设部. 混凝土结构试验方法标准:GB/T 50152—2012[S]. 北京:中国建筑工业出版社,2012. [21] 肖建庄,朱永明,王璞瑾,等. 再生混凝土U型叠合梁抗剪性能[J]. 建筑科学与工程学报,2012,29(2):1-6. [22] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范:GB 50010—2010[S]. 北京:中国标准出版社,2015. [23] ACI Committee 318. Building code requirements for structural concrete[S]. Farmington Hills:American Concrete Institute,2011. -
点击查看大图
计量
- 文章访问数: 25
- HTML全文浏览量: 7
- PDF下载量: 0
- 被引次数: 0
登录
注册
E-alert
登录
注册
E-alert
下载: