Quasi-Static Tests on Seismic Performance of Centrifugal Concrete-Filled Steel Tube Piles
-
摘要: 为研究离心钢管混凝土管桩(SC管桩)的抗震性能,并考虑填芯以及施加预应力的影响,对3根SC管桩和2根预应力高强混凝土管桩(PHC管桩)进行拟静力试验。研究表明:SC管桩的抗震承载力、屈服位移、极限位移、延性系数分别为PHC管桩的2.85、1.97、2.47、1.47倍,耗能系数约为PHC管桩的4.5倍,总耗能是其32倍,同等位移条件下SC管桩的割线刚度约为PHC管桩的2~3倍,承载力陡降时SC管桩对应的位移约为PHC管桩的2.4倍;施加预应力后的SC管桩,其抗震承载力较SC管桩提高了约15%;填芯对SC管桩抗震性能的影响可以忽略不计。Abstract: In order to study the seismic performance of centrifugal concrete-filled steel tubular piles (SC tube piles) and consider the influence of core filling and prestress, the quasi-static tests were carried out on 3 SC tubular piles and 2 prestressed high-strength concrete tubular piles (PHC tube piles). The results showed that the seismic bearing capacity, yield displacement, ultimate displacement and ductility coefficient of SC tubular piles were 2.85 times, 1.97 times, 2.47 times and 1.47 times of PHC tubular piles, respectively, the energy consumption coefficient was about 4.5 times of PHC tubular piles, and the total energy consumption was 32 times of PHC tubular piles, the cut line stiffness of SC tubular piles in the same displacement conditions was about 2-3 times that of PHC tubular piles, and the displacement of SC tubular piles when the bearing capacity dropped steeply was about 2.4 times that of PHC tubular piles; the seismic bearing capacity of prestressed SC tubular piles was about 15% higher than that of SC tubular piles; the effect of concrete filling on the seismic performance of SC tubular piles was negligible.
-
Key words:
- SC tube pile /
- PHC tube pile /
- seismic performance /
- quasi-static test /
- ductility
-
[1] 杜宙芳. PHC管桩抗震性能试验和延性分析[D]. 天津:天津大学,2015. [2] 吴平,郭杨,朱大勇,等. 配置BFRP筋复合配筋PHC管桩受弯和受剪性能试验研究[J]. 建筑结构学报,2021,42(4):147-156. [3] 李曰辰,邢克勇,刘浩,等. 考虑土-桩-结构相互作用的PHC管桩抗震性能试验研究[J]. 岩石力学与工程学报,2013,32(2):401-410. [4] ZHU C Y, ZHAO Y H, GAO S, et al. Mechanical behavior of concrete filled glass fiber reinforced polymer-steel tube under cyclic loading[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering),2013 14(11):778-787. [5] 李艳艳,陈艳风,刘坤,等. 预应力高强混凝土管桩抗震性能试验研究[J]. 河北工业大学学报,2013,42(5):99-103. [6] 王铁成,王文进,赵海龙,等. 不同高强预应力管桩抗震性能的试验对比[J]. 工业建筑,2014,44(7):84-89. [7] 杨志坚,王文进,康谷贻. 往复荷载作用下预应力高强混凝土管桩延性分析[J]. 工程力学,2016,33(增刊1):107-112. [8] 唐佳男. 新型PHC管桩抗震性能及承载力分析[D]. 南京:东南大学,2017. [9] 王庆利,张艺竞,彭宽.CFRP加固方钢管混凝土在弯-扭荷载作用下的性能研究[J].工业建筑,2022,52(11):181-188. [10] 侯敏. 内配螺旋箍筋钢管混凝土轴压短柱力学性能研究[D]. 大连:大连理工大学,2021. [11] 王静峰,华正茂,沈奇罕,等.椭圆钢管混凝土柱抗震性能试验与分析[J].土木工程学报,2023, 56(6):38-51. [12] 游政. 钢管约束钢筋混凝土框架结构抗震性能研究[D]. 重庆:重庆大学,2021. [13] CHITAWADAGI M V, NARASIMHAN M C. Strength deformation behaviour of circular concrete filled steel tubes subjected to pure bending[J]. Journal of Constructional Steel Research, 2009,65(8/9):1836-1845. [14] 中华人民共和国住房和城乡建设部. 建筑抗震试验规程:JGJ/T 101—2015[S]. 北京:中国建筑工业出版社,2015. [15] 刘文锋,王金婷,唐剑维. 抗震能力曲线弹塑性双折线模型的确定方法[J]. 建筑结构,2015,45(4):14-17,26. [16] 张鹏,桂金洋,邓宇,等. SRC偏心受拉构件抗震性能试验研究[J].工程抗震与加固改造,2021,43(1):69-75. [17] 戎贤,徐晓哲,李艳艳. 预应力高强混凝土管桩抗震性能试验研究[J]. 工业建筑,2013,43(7):72-75. 期刊类型引用(1)
1. 胡子萱,卢集富. 软土蠕变本构模型研究综述. 四川建材. 2021(07): 90-91 . 百度学术
其他类型引用(1)
-

计量
- 文章访问数: 7
- HTML全文浏览量: 1
- PDF下载量: 1
- 被引次数: 2