Experimental Study on Freeze-Thaw Characteristics of Weathered Arsenic Sandstone Soil Improved by Microbial-Induced Calcium Precipitation
-
摘要: 砒砂岩地区严重的水土流失使当地植被稀少、生态环境恶劣,同时砒砂岩岩体经风化后形成的碎屑不断迁移到黄河等河流中,成为黄河中上游粗泥沙的主要来源。为此,将微生物矿化技术应用于砒砂岩及其风化土的加固和改良解决其遇水溃散的难题。在实现砒砂岩风化土矿化加固的基础上,采用宏观力学性能测试结合孔隙测定微细观结构测试手段,研究冻融循环作用后矿化风化土的性能变化和衰退机理。结果表明:矿化试样经盐蚀冻融循环后,其强度降低,内部孔隙不断变化,不同大小的孔径发育或相互转化。盐环境对试样强度性质造成的削弱程度大于去离子水中试样的劣化程度,复合盐环境中试样强度性质的削弱大于单一盐环境中的试样。混合盐环境下经历5次冻融循环后试样就侵蚀破坏了,抗冻融能力降低至0.125 6,同时期去离子水环境中试样抗冻融能力降低至0.416 7,相差将近3倍;因冻胀作用、干湿作用和颗粒间连接的破坏,试样孔隙度增大,不同类型孔的分布量累积变化率随冻融循环次数的增加而增大。试样强度的降低,实际是内部骨架力学性能降低的宏观体现,试样内部孔隙骨架因抵抗冻胀力能力的不断减弱,造成宏观上强度的不断降低,随着试样抵抗变形潜能的释放,冰的体积膨胀系数和孔隙收缩系数不断变大,混合盐由于内部胶结破坏多而孔隙骨架的变形能力弱,膨胀系数最大,收缩系数最小。Abstract: Severe soil erosion in arsenic sandstone areas not only reduces the local vegetation and deteriorates the ecological environment, but also the debris formed by weathered arsenic sandstone constantly migrates into the Yellow River and other rivers, becoming the main source of coarse sediment in the middle and upper reaches of the Yellow River. Therefore, the microbial-induced calcium precipitation technique was applied to arsenic sandstone and its weathered soil to cure and improve their water disintegration. On the basis of the mineralization and cementation for weathered soil of arsenic sandstone, macroscopic mechanical properties tests combined with microstructural tests of pore sizes were conducted to study the property changes and deteriorative mechanisms of the weathered soil after freeze-thaw cycles in the salt corrosion environment. The test results indicated that the strength of the soil-mineralized specimens decreased after freeze-thaw cycles in the salt corrosion environment, and the internal pores changed continuously with different sizes of pores developing or transforming into each other. The attenuation in the intensity properties of soil-mineralized specimens in the salt corrosion environment was greater than that in the deionized water environment, and the attenuation in the intensity properties of soil-mineralized specimens in the composite salt environment was greater than that in the single salt environment. After five rounds of freeze-thaw cycles in the mixed salt environment, the soil-mineralized specimens were damaged and the freeze-thaw resistance was reduced to 0.125 6, and simultaneously, the freeze-thaw resistance of the soil-mineralized specimens in the deionized water environment was reduced to 0.416 7 in the same period, a difference was nearly three times; the porosity of the soil-mineralized specimens increased as a result of the frost heave action, wet-dry action and the destruction of inter-particle connections, and the cumulative ratio of change in different types of pores increased with the round of freeze-thaw cycles. The reduction in strength of the soil-mineralized specimens was actually a macroscopic reflection of the reduction in the mechanical properties of the internal skeleton. The macroscopic strength dropped constantly reducing with the resistance to frost heaving of pore skeleton of the soil-mineralized specimens. As the potential deformation resistance of soil-mineralized specimens was released, the volume expansion coefficient and pore shrinkage coefficient of ice continued to increase. Due to the frequent internal bonding damage and weak deformation ability of the pore skeleton, the mixed salt had the highest expansion coefficient and the lowest shrinkage coefficient.
-
[1] 张若曦,秦富仓,李龙,等.砒砂岩区坡面微地貌变化与侵蚀产沙的响应关系[J].水土保持研究,2022,29(6):21-27,35. [2] 王丹,陈超.砒砂岩区沙棘生态工程建设的实践与思考[J].中国水土保持,2022(9): 51-54. [3] 王燕星,李驰,葛晓东,等.黄河流域内蒙古段砒砂岩风化土微生物矿化改良的试验研究[J].岩土力学,2022,43(3):708-718. [4] 何想, 马国梁, 汪杨, 等. 基于微流控芯片技术的微生物加固可视化研究[J]. 岩土工程学报, 2020, 42(6): 1005-1012. [5] 李涛,赖小颖,黄昊,等.新型微生物固载材料的结晶效果研究[J].工业建筑, 2022, 52(11):84-90. [6] 何稼, 楚剑, 刘汉龙, 等. 微生物岩土技术的研究进展[J]. 岩土工程学报, 2016, 38(4): 643-653. [7] 刘汉龙, 肖鹏, 肖杨, 等. 微生物岩土技术及其应用研究新进展[J]. 土木与环境工程学报(中英文), 2019, 41(1): 1-14. [8] 张茜, 叶为民, 刘樟荣, 等. 基于生物诱导碳酸钙沉淀的土体固化研究进展[J]. 岩土力学, 2022,43(2): 345-357. [9] 董博文, 刘士雨, 俞缙, 等. 基于微生物诱导碳酸钙沉淀的天然海水加固钙质砂效果评价[J]. 岩土力学, 2021, 42(4): 1104-1114. [10] WHIFFIN V S, VAN PAASSEN L A, HARKES M P. Microbial carbonate precipitation as a soil improvement technique[J]. Geomicrobiology Journal, 2007, 24(5): 417-423. [11] DEJONG J T, SOGA K, KAVAZANJIAN E, et al. Biogeochemical processes and geotechnical applications: progress, opportunities and challenges[J]. Geotechnique, 2013, 63(4): 287-301. [12] 王涛.微生物菌群和植物联合改良砒砂岩的试验研究[D].南京:东南大学,2020. [13] 刘汉龙,张宇,郭伟,等.微生物加固钙质砂动孔压模型研究[J].岩石力学与工程学报,2021,40(4):790-801. [14] 刘汉龙,肖鹏,肖杨,等.MICP胶结钙质砂动力特性试验研究[J].岩土工程学报,2018,40(1):38-45. [15] 刘汉龙,马国梁,赵常,等.微生物加固钙质砂的宏微观力学机理[J].土木与环境工程学报(中英文),2020,42(4):205-206. [16] 毕慈芬,王富贵.砒砂岩地区土壤侵蚀机理研究[J]. 泥沙研究, 2008, 2(1): 70-73. [17] 陈溯航.紫红色砒砂岩冻融循环下变形特性及微观结构试验研究[D]. 呼和浩特: 内蒙古农业大学, 2017. [18] 程瑶佳,唐朝生,泮晓华,等.微生物矿化作用(MICP)-铺砂联合提高黄土抗侵蚀性试验研究[J].防灾减灾工程学报,2022,42(5):1010-1018. [19] 常书铭,干飞,曹腾,等.脲酶矿化强化黄土抗水蚀性能演变特征试验研究[J].水利规划与设计,2022(10):111-116. [20] HARDIN B O, EVICH V P. Shear modulus and damping in soils: design equations and curves[J]. Journal of Soil Mechanics and Foundations, 1972, 98(7): 667-692. [21] 孙洋, 刁波. 冻融与化学物质腐蚀环境下混凝土力学性能退化的试验研究[C]//全国结构工程学术会议论文集. 2008. [22] 王燕星, 李驰, 高利平, 等.低磁场核磁共振测定盐环境下微生物诱导碳酸钙沉积矿化材料的孔隙结构[J]. 工业建筑, 2020, 50(12): 1-7. [23] LI C, WANG Y X, ZHOU T J, et al. Sulfate acid corrosion mechanism of biogeomaterial based on MICP technology[J]. Journal of Materials in Civil Engineering, 2019, 31(7): 1-11. [24] 贾海梁. 多孔岩石及裂隙岩体冻融损伤机制的理论模型和试验研究[D]. 武汉: 中国地质大学, 2016. [25] 郭耀, 李刚, 贾成艳, 等. 冰力学参数的超声波测试研究[J]. 极地研究, 2016, 28(1): 152-157.
点击查看大图
计量
- 文章访问数: 35
- HTML全文浏览量: 7
- PDF下载量: 0
- 被引次数: 0