Experimental Research on Curing Characteristics of Sludge with High-Salt- Content Leachate Solidified by Cement in Domestic Waste Landfills
-
摘要: 采用浸没燃烧工艺产生的生活垃圾填埋场渗滤液污泥具有有机质含量和重金属含量低但液性指数和含盐量高的特点,属于新型污泥。分别采用普通硅酸盐水泥和硫铝酸盐水泥固化渗滤液污泥,对固化污泥试样进行无侧限抗压强度试验和浸泡试验,以评估水泥对高含盐量渗滤液污泥的强度和水稳定性的加固效果;同时,对固化污泥试样进行微观测试,以探索水泥固化效应的微观控制机制。结果表明:1)普通硅酸盐水泥对高含盐量渗滤液污泥的固化效果不理想;2)掺入10%的硫铝酸盐水泥,固化污泥养护28 d的无侧限抗压强度满足填埋要求;3)当硫铝酸盐水泥的掺量不小于50%时,养护28 d的固化污泥试样浸泡28 d后的无侧限抗压强度能满足填埋要求;4)硫铝酸盐水泥掺入后所生成的具有胶结效应的C-S-H凝胶,导致污泥的微观结构更加致密,是硫铝酸盐水泥固化高含盐量渗滤液污泥强度提升的微观控制机制;5)硫铝酸盐水泥固化试样内部可溶盐污泥颗粒随浸泡时间的增加逐渐溶解并引致C-S-H凝胶的断裂和散落及诱发微观胶结形态破坏,是硫铝酸盐水泥固化高含盐量渗滤液污泥浸水劣化的微观控制机制。Abstract: The landfill leachate sludge produced by submerged combustion process has the characteristics of low organic matter content and heavy metal content but high liquid index and salt content. Ordinary Portland cement and sulphoaluminate cement with different cement types and cement contents were used to solidifiy leachate sludge. The unconfined compressive strength test and immersion test were carried out to evaluate the reinforcement effect of cement on the strength and water stability of high-salt-content leachate sludge. Meanwhile, microscopy tests were carried out on the solidified sludge samples to explore the micro-control mechanism of cement solidification effect. The test results showed that: 1) the curing effect of ordinary Portland cement on sludge with high-salt-content leachate was non-ideal;2) the unconfined compressive strength of solidified sludge with 10% sulfoaluminate cement content for 28 d curing age met the strength requirement of solidified sludge landfills; 3) when the content of sulphoaluminate cement was more than 50%, the unconfined compressive strength of solidified sludge with curing age of 28 days after being immersed for 28 days could meet the landfill requirement of 50 kPa;4) C-S-H gel with cementing effect produced by the addition of sulphoaluminate cement caused the microstructure of the sludge to be more compact, which was the micro-control mechanism for the strength enhancement of sludge in sulphoaluminate cement solidified leachate with high salt content; 5) the soluble salt sludge particles in the sample solidified by sulphoaluminate cement gradually dissolved with the increase of immersion time, which led to the fracture and dispersion of C-S-H gel and the destruction of micro-cementing morphology, it was the micro-control mechanism for the immersion deterioration of sulphoaluminate cement solidified high-salt leachate sludge.
-
[1] 王波, 单明. 垃圾焚烧发电产业即将进入成熟期冲刺阶段[J]. 环境经济, 2021(1): 45-49. [2] 詹良通, 罗小勇, 管仁秋, 等. 某垃圾填埋场污泥坑外涌及其引发下游堆体失稳机理[J]. 岩土工程学报, 2013, 35(7): 1189-1196. [3] 广东省环境保护局.水污染物排放限值:DB 44/26—2001 [S]. 广州:广东省人民政府,2001. [4] 罗小勇, 王艳明, 熊建英, 等. 垃圾填埋场污泥坑原位修复工程实践[J]. 环境工程学报, 2018, 12(9): 2707-2716. [5] 晏超群, 程治良, 全学军, 等. 多通道网状电极电化学预处理垃圾渗滤液反渗透浓缩液[J]. 环境化学, 2021, 40(2): 603-613. [6] 中华人民共和国住房和城乡建设部.生活垃圾卫生填埋处理技术规范:GB 50869—2013 [S]. 北京: 中国计划出版社, 2013. [7] 中国环境科学研究院.生活垃圾填埋场污染控制标准:GB 16889—2008 [S]. 北京: 中国环境科学出版社, 2008. [8] 杨爱武, 徐彩丽, 郎瑞卿, 等. 冻融循环作用下城市污泥固化土三维力学特性及其破坏准则[J]. 岩土力学, 2021, 42(4): 963-975. [9] 李磊, 朱伟, 林城. 骨架构建法进行污泥固化处理的试验研究[J]. 中国给水排水, 2005, 21(6):41-43. [10] 张亭亭,李江山,王平,等. 磷酸镁水泥固化铅污染土的应力-应变特性研究[J].岩土力学, 2016, 37(增刊1): 215-225. [11] YOOBANPOT N, JAMSAWANG P, POORAHONG H, et al. Multiscale laboratory investigation of the mechanical and microstructural properties of dredged sediments stabilized with cement and fly ash[J]. Engineering Geology, 2020, 267(3), 105491. [12] 杨康辉, 欧忠文, 肖寒冰, 等. CCCW对硫铝酸盐水泥固化土强度的影响[J]. 后勤工程学院学报, 2016, 32(1): 83-87. [13] KHOSHSIRAT V, BAYESTEH H, SHARIFI M. Effect of high salinity in grout on the performance of cement-stabilized marine clay[J]. Construction and Building Materials, 2019, 217:93-107. [14] LYU Q F, JIANG L S, MA B, et al. A study on the effect of the salt content on the solidification of sulfate saline soil solidified with an alkali-activated geopolymer[J]. Construction and Building Materials, 2018, 176: 68-74. [15] 杨爱武, 杨少朋, 郎瑞卿, 等. 轻质固化盐渍土三维力学特性研究[J]. 岩土力学, 2021, 42(3): 593-600. [16] 中华人民共和国水利部.土工试验方法标准:GB/T 50123—2019 [S]. 北京: 中国计划出版社, 2019. [17] ON H T, CHEN W B, YIN J H, et al. Stress-strain behaviour of cement-stabilized Hong Kong marine deposits[J/OL]. Construction and Building Materials, 2021, 274[2022-11-07]. https://doi.org/10.1016/j.conbuildmat.2020.122103. [18] LANG L, SONG C Y, XUE L, et al. Effectiveness of waste steel slag powder on the strength development and associated micro-mechanisms of cement-stabilized dredged sludge[J/OL]. Construction and Building Materials, 2020, 240 [2022-11-07]. https://doi.org/10.1016/j.conbuildmat.2019.117975. [19] 冯德銮,黎森宇,梁仕华. 水泥固化滨海软土动力特性研究进展与评述[J]. 广东工业大学学报, 2024, 41(2): 23-36. [20] XING H, YANG X, CHAO X, et al. Strength characteristics and mechanisms of salt-rich soil-cement[J]. Engineering Geology, 2009, 103: 33-38. [21] BALONIS M, LOTHENBACH B, SAOUT G L, et al. Impact of chloride on the mineralogy of hydrated Portland cement systems[J]. Cement & Concrete Research, 2010, 40(7): 1009 -1022. [22] 曹净, 孙成蛟. 置换式水泥土桩长期强度特性试验研究[J]. 工程勘察, 2018, 46(2):8-11. 期刊类型引用(1)
1. 胡子萱,卢集富. 软土蠕变本构模型研究综述. 四川建材. 2021(07): 90-91 . 百度学术
其他类型引用(1)
-

计量
- 文章访问数: 14
- HTML全文浏览量: 4
- PDF下载量: 2
- 被引次数: 2