Research on Time-Frequency Parameter Prediction Models of Ground Motion
-
摘要: 为了使地震危险性分析、地震区划等工程应用中的参数预测方程能同时体现地震动的时域和频域非平稳性,需要一种新的地震动时频参数预测模型。基于美国西部30余次地震记录,使用互补集合经验模态分解法计算时变功率谱,利用时变功率谱计算6个时频参数,建立时频参数随震级、距离和场地条件变化的预测方程和神经网络拓扑结构。运用非线性最小二乘法拟合得到预测方程的系数值,并训练得到神经网络预测模型。研究结果表明:总能量随震级的增大而增大,随距离增大而减小;频谱质心和标准差、时间质心和标准差以及时频相关系数随震级的增大而减小,随距离的增大表现则各不相同;建立的神经网络时频参数预测模型泛化能力较强,可以较好地预测地震动时频参数。Abstract: In order to make the parameter prediction equations in engineering applications such as seismic hazard analysis and seismic zoning reflect the time-frequency non-stationarity of ground motion, a new time-frequency parameter prediction model of ground motion is needed. Based on more than 30 earthquake records in the western United States, the complementary ensemble empirical mode decomposition method was used to calculate the time-varying power spectrum, the time-varying power spectrum was used to calculate six time-frequency parameters, and the prediction equation and neural network topology of time-frequency parameters with magnitude, distance and site conditions were established. The nonlinear least squares method was used to fit the coefficient values of the prediction equation, and the neural network prediction model was trained. The results showed that the total energy increased with the increase of magnitude and decreased with the increase of distance. The centroid and standard deviation of the spectrum, the centroid and standard deviation of the time, and the time-frequency correlation coefficients decreased with the increase of the magnitude, but varied with the increase of the distance. The established neural network time-frequency parameter prediction model showed strong generalization ability and could better predict the time-frequency parameters of ground motion.
-
[1] RAGHUKANTH S, SANGEETHA S. Empirical mode decomposition of earthquake accelerograms[J]. Advances in Adaptive Data Analysis, 2012, 4(4),1250022. [2] 钟菊芳,吴海波.多断层破裂下单双峰地震动参数对比分析[J].防灾减灾工程学报,2018,38(1):193-202. [3] SHASHI P. Ground motion simulation validation based on loss metrics[D]. Irvine: University of California, 2017. [4] BRADLEY B A. Empirical correlations between cumulative absolute velocity and amplitude-based ground motion intensity measures[J]. Earthquake Spectra, 2012, 28(1):37-54. [5] CABALAR A F, CEVIK A. Genetic programming-based attenuation relationship: an application of recent earthquakes in turkey[J]. Computers & Geosciences, 2009, 35(9):1884-1896. [6] BOORE D M, ATKINSON G M. Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s[J]. Earthquake Spectra, 2008, 24(1):99-138. [7] PODILI B, RAGHUKANTH S T G. Ground motion prediction equations for higher order parameters[J]. Soil Dynamics and Earthquake Engineering-Southampton, 2019, 118:98-110. [8] PODILI B, RAGHUKANTH S T G. Ground motion parameters for the 2011 Great Japan Tohoku earthquake[J]. Journal of Earthquake Engineering, 2019, 23(4): 688-723. [9] VEMULA S, YELLAPRAGADA M, PODILI B, et al. Ground motion intensity measures for New Zealand[J]. Soil Dynamics and Earthquake Engineering, 2021, 150, 106928. [10] SREEJAYA K P, BASU J, RAGHUKANTH S T G, et al. Prediction of ground motion intensity measures using an artificial neural network[J]. Pure and Applied Geophysics, 2021, 178(6): 2025-2058. [11] 王竟仪,王治国,陈宇民,等.深度人工神经网络在地震反演中的应用进展[J].地球物理学进展,2023,38(1): 298-320. [12] 周纯择,阳军生,牟友滔,等.南昌上软下硬地层中盾构施工地表沉降的BP神经网络预测方法[J].防灾减灾工程学报,2015,35(4):556-562. [13] KHOSRAVIKIA F, ZENINALI Y, NAGY Z, et al. Neural network-based equations for predicting PGA and PGV in Texas, Oklahoma, and Kansas[M]//Geotechnical Earthquake Engineering and Soil Dynamics V. Reston. VA: American Society of Civil Engineers, 2018: 538-549. [14] DHANYA J, RAGHUKANTH S T G. Ground motion prediction model using artificial neural network[J]. Pure and Applied Geophysics, 2018, 175(3): 1035-1064. [15] DHANYA J, SAGAR D, RAGHUKANTH S T G. Predictive models for ground motion parameters using artificial neural network[C]//Recent Advances in Structural Engineering, Volume 2. Select Proceedings Neural Network. Springer, Singapore: 2019: 93-105. [16] VEMULA S, YELLAPRAGADA M, PODILI B, et al. Ground motion intensity measures for New Zealand[J]. Soil Dynamics and Earthquake Engineering, 2021, 150, 106928. [17] SREEJAYA K P, BASU J, RAGHUKANTH S T G, et al. Prediction of ground motion intensity measures using an artificial neural network[J]. Pure and Applied Geophysics, 2021, 178(6): 2025-2058. [18] 马宗晋.中美大陆东部地震构造的比较[J].中国地震,1986(4):33-41. [19] Pacific Earthquake Engineering Research Center: NGA-West2 Database[DB/OL]. 2022-08-18. http://ngawest2.berkeley.edu/flatfile.html. [20] HUANG N E, WU M L C, LONG S R, et al. A confidence limit for the empirical mode decomposition and Hilbert spectral analysis[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2003, 459: 2317-2345. [21] YEH J R, SHIEH J S, HUANG N E. Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method[J]. Advances in Adaptive Data Analysis, 2010, 2(2): 135-156. [22] LIANG J, CHAUDHURI S R, SHINOZUKA M. Simulation of nonstationary stochastic processes by spectral representation[J]. Journal of Engineering Mechanics, 2007, 133(6): 616-627. [23] 卢建旗. 中强地震活动区地震动衰减规律研究[D].哈尔滨:中国地震局工程力学研究所,2009. [24] 蔡荣辉,崔雨轩,薛培静.三层BP神经网络隐层节点数确定方法探究[J].电脑与信息技术,2017,25(5):29-33.
点击查看大图
计量
- 文章访问数: 7
- HTML全文浏览量: 1
- PDF下载量: 0
- 被引次数: 0