中国科技核心期刊
中国建筑科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地震动时频参数预测模型研究

周万森 钟菊芳 张艳红 胡晓

周万森, 钟菊芳, 张艳红, 胡晓. 地震动时频参数预测模型研究[J]. 工业建筑, 2024, 54(12): 177-185. doi: 10.3724/j.gyjzG22110105
引用本文: 周万森, 钟菊芳, 张艳红, 胡晓. 地震动时频参数预测模型研究[J]. 工业建筑, 2024, 54(12): 177-185. doi: 10.3724/j.gyjzG22110105
ZHOU Wansen, ZHONG Jufang, ZHANG Yanhong, HU Xiao. Research on Time-Frequency Parameter Prediction Models of Ground Motion[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(12): 177-185. doi: 10.3724/j.gyjzG22110105
Citation: ZHOU Wansen, ZHONG Jufang, ZHANG Yanhong, HU Xiao. Research on Time-Frequency Parameter Prediction Models of Ground Motion[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(12): 177-185. doi: 10.3724/j.gyjzG22110105

地震动时频参数预测模型研究

doi: 10.3724/j.gyjzG22110105
基金项目: 

国家自然科学基金项目(51969019,51468045)。

2022年度水利部重大科技项目(SKS-2022100)

中国水利水电科学研究院基本科研业务费专项项目(EB110145B0012021)

详细信息
    作者简介:

    周万森,硕士研究生,主要从事地震动参数特征研究。

    通讯作者:

    钟菊芳,博士,教授,主要从事地震动研究,zhjf_814@163.com。

Research on Time-Frequency Parameter Prediction Models of Ground Motion

  • 摘要: 为了使地震危险性分析、地震区划等工程应用中的参数预测方程能同时体现地震动的时域和频域非平稳性,需要一种新的地震动时频参数预测模型。基于美国西部30余次地震记录,使用互补集合经验模态分解法计算时变功率谱,利用时变功率谱计算6个时频参数,建立时频参数随震级、距离和场地条件变化的预测方程和神经网络拓扑结构。运用非线性最小二乘法拟合得到预测方程的系数值,并训练得到神经网络预测模型。研究结果表明:总能量随震级的增大而增大,随距离增大而减小;频谱质心和标准差、时间质心和标准差以及时频相关系数随震级的增大而减小,随距离的增大表现则各不相同;建立的神经网络时频参数预测模型泛化能力较强,可以较好地预测地震动时频参数。
  • [1] RAGHUKANTH S, SANGEETHA S. Empirical mode decomposition of earthquake accelerograms[J]. Advances in Adaptive Data Analysis, 2012, 4(4),1250022.
    [2] 钟菊芳,吴海波.多断层破裂下单双峰地震动参数对比分析[J].防灾减灾工程学报,2018,38(1):193-202.
    [3] SHASHI P. Ground motion simulation validation based on loss metrics[D]. Irvine: University of California, 2017.
    [4] BRADLEY B A. Empirical correlations between cumulative absolute velocity and amplitude-based ground motion intensity measures[J]. Earthquake Spectra, 2012, 28(1):37-54.
    [5] CABALAR A F, CEVIK A. Genetic programming-based attenuation relationship: an application of recent earthquakes in turkey[J]. Computers & Geosciences, 2009, 35(9):1884-1896.
    [6] BOORE D M, ATKINSON G M. Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s[J]. Earthquake Spectra, 2008, 24(1):99-138.
    [7] PODILI B, RAGHUKANTH S T G. Ground motion prediction equations for higher order parameters[J]. Soil Dynamics and Earthquake Engineering-Southampton, 2019, 118:98-110.
    [8] PODILI B, RAGHUKANTH S T G. Ground motion parameters for the 2011 Great Japan Tohoku earthquake[J]. Journal of Earthquake Engineering, 2019, 23(4): 688-723.
    [9] VEMULA S, YELLAPRAGADA M, PODILI B, et al. Ground motion intensity measures for New Zealand[J]. Soil Dynamics and Earthquake Engineering, 2021, 150, 106928.
    [10] SREEJAYA K P, BASU J, RAGHUKANTH S T G, et al. Prediction of ground motion intensity measures using an artificial neural network[J]. Pure and Applied Geophysics, 2021, 178(6): 2025-2058.
    [11] 王竟仪,王治国,陈宇民,等.深度人工神经网络在地震反演中的应用进展[J].地球物理学进展,2023,38(1): 298-320.
    [12] 周纯择,阳军生,牟友滔,等.南昌上软下硬地层中盾构施工地表沉降的BP神经网络预测方法[J].防灾减灾工程学报,2015,35(4):556-562.
    [13] KHOSRAVIKIA F, ZENINALI Y, NAGY Z, et al. Neural network-based equations for predicting PGA and PGV in Texas, Oklahoma, and Kansas[M]//Geotechnical Earthquake Engineering and Soil Dynamics V. Reston. VA: American Society of Civil Engineers, 2018: 538-549.
    [14] DHANYA J, RAGHUKANTH S T G. Ground motion prediction model using artificial neural network[J]. Pure and Applied Geophysics, 2018, 175(3): 1035-1064.
    [15] DHANYA J, SAGAR D, RAGHUKANTH S T G. Predictive models for ground motion parameters using artificial neural network[C]//Recent Advances in Structural Engineering, Volume 2. Select Proceedings Neural Network. Springer, Singapore: 2019: 93-105.
    [16] VEMULA S, YELLAPRAGADA M, PODILI B, et al. Ground motion intensity measures for New Zealand[J]. Soil Dynamics and Earthquake Engineering, 2021, 150, 106928.
    [17] SREEJAYA K P, BASU J, RAGHUKANTH S T G, et al. Prediction of ground motion intensity measures using an artificial neural network[J]. Pure and Applied Geophysics, 2021, 178(6): 2025-2058.
    [18] 马宗晋.中美大陆东部地震构造的比较[J].中国地震,1986(4):33-41.
    [19] Pacific Earthquake Engineering Research Center: NGA-West2 Database[DB/OL]. 2022-08-18. http://ngawest2.berkeley.edu/flatfile.html.
    [20] HUANG N E, WU M L C, LONG S R, et al. A confidence limit for the empirical mode decomposition and Hilbert spectral analysis[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2003, 459: 2317-2345.
    [21] YEH J R, SHIEH J S, HUANG N E. Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method[J]. Advances in Adaptive Data Analysis, 2010, 2(2): 135-156.
    [22] LIANG J, CHAUDHURI S R, SHINOZUKA M. Simulation of nonstationary stochastic processes by spectral representation[J]. Journal of Engineering Mechanics, 2007, 133(6): 616-627.
    [23] 卢建旗. 中强地震活动区地震动衰减规律研究[D].哈尔滨:中国地震局工程力学研究所,2009.
    [24] 蔡荣辉,崔雨轩,薛培静.三层BP神经网络隐层节点数确定方法探究[J].电脑与信息技术,2017,25(5):29-33.
  • 加载中
计量
  • 文章访问数:  7
  • HTML全文浏览量:  1
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-01
  • 网络出版日期:  2025-01-04
  • 刊出日期:  2024-12-20

目录

    /

    返回文章
    返回