Research Progress on Effects of Freeze-Thaw Action on Wind Erosion and Dust Resistance of Microbial Cured Bare Soil
-
摘要: 微生物诱导碳酸钙沉淀(MICP)改良土的技术,是一种保护生态环境、抗风蚀扬尘的新方法。通过对MICP固化裸土抗风蚀扬尘机理及固化方法的总结,系统分析了固化条件和环境因素对MICP固化裸土抗风蚀扬尘的影响。现有研究表明:冻融作用对MICP固化土体稳定性和物理力学性质的影响,显著增大了裸土的可蚀性。基于上述研究,指出了研究冻融循环对MICP固化裸土抗风蚀扬尘的必要性;最后,提出了微生物固化裸土抗冻融耐久性的研究是MICP技术固土抗风蚀扬尘理论基础的观点。Abstract: Microbial Induced Calcium Carbonate Precipitation (MICP) technique is a new method to improve wind erosion and dust resistance of bare soil and protect the ecological environment. The reinforcing mechanisms and curing methods for bare soil cemented by MICP to improve its properties of wind erosion and dust resistance were summarized. The effects of cured conditions and environmental factors on wind erosion and dust resistance of bare soil cemented by MICP were systematically analyzed. The existing findings indicated that freeze-thaw action influenced on the structural stability and physical and mechanical properties of bare soil cemented by MICP, which deteriorated the wind erosion and dust resistance of soil. Therefore, the necessity to study the effects of freeze-thaw action on wind erosion and dust resistance of bare soil cemented by MICP were presented. Finally, it was pointed out that durability study on freeze-thaw resistance of bare soil cemented by MICP was the theoretical base of stabilizing soil and improving wind erosion and dust resistance.
-
Key words:
- bare soil /
- MICP /
- wind erosion dust resistance /
- freeze-thaw cycle
-
[1] 韩旸,白志鹏,姬亚芹,等. 裸土风蚀型开放源起尘机制研究进展[J]. 环境污染与防治,2008 (2): 77-82. [2] 王佳庭,于明含,杨海龙,等. 乌兰布和沙漠典型植物群落土壤风蚀可蚀性研究[J]. 干旱区地理,2020, 43(6): 1543-1550. [3] 刘艳萍,刘铁军,蒙仲举. 草原区植被对土壤风蚀影响的风洞模拟试验研究[J]. 中国沙漠,2013, 33(3): 668-672. [4] 李鸿儒,李斗,孙卫星. 防尘绿网及其环境效应研究[J]. 中国水运,2021 (3): 129-132. [5] 魏文. 浅谈施工现场扬尘问题及控制技术措施[J]. 建筑安全,2019, 34(3): 39-41. [6] 张文华,高金凤,刘巧彦,等. 兰州市洒水成本与防尘效果的分析[J]. 甘肃科技,2019, 35(2): 32-33. [7] 王林凯,郭红霞,秦建平,等. 风蚀扬尘抑尘剂制备及其抑尘效果[J]. 环境工程学报,2020, 14(12): 3460-3467. [8] 秦建平,李贝贝,杨涛,等. 风蚀扬尘抑尘剂效率测试方法与应用[J]. 环境科学, 2019, 40(9): 3935-3941. [9] 刘汉龙,肖鹏,肖杨,等. 微生物岩土技术及其应用研究新进展[J]. 土木与环境工程学报(中英文),2019, 41(1): 1-14. [10] ZHAN Q, QIAN C. Mineralization and cementation of fugitive dust based on the utilization of carbon dioxide and its characterization[J]. Journal of Wuhan University of Technology:Mater. Sci. Ed.,2018, 33(2): 263-267. [11] 李驰,王硕,王燕星,等. 沙漠微生物矿化覆膜及其稳定性的现场试验研究[J]. 岩土力学,2019, 40(4): 1291-1298. [12] 骆晓伟. 基于微生物诱导碳酸钙沉淀技术(MICP)的砂土固化试验研究[D].南京:南京大学, 2018. [13] GOMEZ M G, MARTINEZ B C, DEJONG J T, et al. Field-scale bio-cementation tests to improve sands[J]. Proceedings of the Institution of Civil Engineers:Ground Improvement, 2015, 168(3): 206-216. [14] SUER P, HALLBERG N, CARLSSON C, et al. Biogrouting compared to jet grouting: environmental (LCA) and economical assessment[J]. Journal of Environmental Science and Health: Part A, 2009, 44(4): 346-353. [15] 练继建,王昶力,闫玥,等. 微生物修复混凝土裂缝的试验观测[J]. 天津大学学报,2019, 52(7): 669-679. [16] 钱春香,李瑞阳,潘庆峰,等. 混凝土裂缝的微生物自修复效果[J]. 东南大学学报(自然科学版),2013, 43(2): 360-364. [17] 李沛豪,屈文俊. 细菌诱导碳酸钙沉积修复混凝土裂缝[J]. 土木工程学报,2010, 43(11): 64-70. [18] 袁杰,陈歆,何虹霖,等. 微生物矿化作用下混凝土裂缝修复与性能补偿[J]. 吉林大学学报(工学版),2020, 50(2): 641-647. [19] JONKERS H M, THIJSSEN A, MUYZER G, et al. Application of bacteria as self-healing agent for the development of sustainable concrete[J]. Ecological Engineering, 2010, 36(2): 230-235. [20] 张敏霞,刘飞飞,王瑞琦,等. 微生物固结裸土及其抗风蚀扬尘的研究进展[J]. 环境污染与防治, 2021, 43(2): 232-236. [21] 刘佳,范昊明,周丽丽,等. 冻融循环对黑土容重和孔隙度影响的试验研究[J]. 水土保持学报, 2009, 23(6): 186-189. [22] 肖东辉,冯文杰,张泽. 冻融循环作用下黄土孔隙率变化规律[J]. 冰川冻土, 2014, 36(4): 907-912. [23] BANG S C, MIN S H, BANG S S. Application of microbiologically induced soil stabilization technique for dust suppression[J]. International Journal of Geo-Engineering, 2011, 3(2): 27-37. [24] 何稼,楚剑,刘汉龙,等. 微生物岩土技术的研究进展[J]. 岩土工程学报,2016, 38(4): 643-653. [25] WHIFFIN V S. Microbial CaCO3 Precipitation for the production of Biocement[D]. Perth: Murdoch University, 2004. [26] DEJONG J T, FRITZGES M B, NÜSSLEIN K. Microbially induced cementation to control sand response to undrained shear[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(11): 1381-1392. [27] JIANG N J, SOGA K, DAWOUD O. Experimental study of the mitigation of soil internal erosion by microbially induced calcite precipitation[C]//Geo-Congress 2014: Geo-Characterization and Modeling for Sustainability. 2014: 1586-1595. [28] WANG X, TAO J, BAO R, et al. Surficial soil stabilization against water-induced erosion using polymer-modified microbially induced carbonate precipitation[J/OL]. Journal of Materials in Civil Engineering, 2018, 30(10) [2022-10-24]. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002490. [29] 钱春香,王安辉,王欣. 微生物灌浆加固土体研究进展[J]. 岩土力学,2015, 36(6): 1537-1548. [30] 高玉峰,杨恩杰,何稼. 基于微生物诱导碳酸钙沉积的防风固沙试验研究[J]. 河南科学,2019, 37(1): 144-150. [31] ZHAO Q, LI L, LI C, et al. Factors affecting improvement of engineering properties of MICP-treated soil catalyzed by bacteria and urease[J/OL]. Journal of Materials in Civil Engineering, 2014, 26(12) [2022-10-24].https://doi.org/10.1061/(ASCE)MT.1943-5533.0001013. [32] LI L, AMINI F, ZHAO Q, et al. Development of a flexible mold for bio-mediated soil materials[C]//Proceeding IFCEE 2015. San Antonio: American Society of Civil Engineers, 2015:2339-2348. [33] 赵茜. 微生物诱导碳酸钙沉淀(MICP)固化土壤实验研究[D]. 北京:中国地质大学, 2014. [34] BAHARUDDIN I N Z, OMAR R C, DEVARAJAN Y, et al. Improvement of engineering properties of liquefied soil using Bio-vege Grout[C/OL]//Proceedings of Earth and Environmental Sciences, 4th International Conference on Energy and Environment 2013 (ICEE 2013).Environmental Earth Sciences,2013, 16(1) [2022-10-24].https://doi.org/10.1088/1755-1315/16/1/012104. [35] 程晓辉,麻强,杨钻,等. 微生物灌浆加固液化砂土地基的动力反应研究[J]. 岩土工程学报, 2013, 35(8): 1486-1495. [36] OKWADHA G D O, LI J. Optimum conditions for microbial carbonate precipitation[J]. Chemosphere,2010, 81(9): 1143-1148. [37] VAN PAASSEN L A, GHOSE R, VAN DER LINDEN T J, et al. Quantifying biomediated ground improvement by ureolysis: large-scale biogrout experiment[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(12): 1721-1728. [38] VAN WIJNGAARDEN W K, VERMOLEN F J, VAN MEURS G, et al. A robust method to tackle pressure boundary conditions in porous media flow: application to biogrout[J]. Computational Geosciences, 2014, 18: 103-115. [39] PAASSEN V L A. Bio-mediated ground improvement: from laboratory experiment to pilot applications[C/OL]//Proceedings of Geo-Frontiers 2011: Advances in Geotechnical Engineering.2011[2022-10-24]. https://doi.org/10.1061/41165(397)419. [40] ZHAN Q, QIAN C, YI H. Microbial-induced mineralization and cementation of fugitive dust and engineering application[J]. Construction & Building Materials,2016, 121: 437-444. [41] TIAN K, WU Y, ZHANG H, et al. Increasing wind erosion resistance of aeolian sandy soil by microbially induced calcium carbonate precipitation[J]. Land Degradation & Development, 2018, 29(12): 4271-4281. [42] WANG Z, ZHANG N, DING J, et al. Experimental study on wind erosion resistance and strength of sands treated with microbial-induced calcium carbonate precipitation[J]. Advances in Materials Science and Engineering, 2018(6): 1-10. [43] NAEIMI M, CHU J. Comparison of conventional and bio-treated methods as dust suppressants[J]. Environmental Science and Pollution Research, 2017, 24(29): 23341-23350. [44] 王瑞琦. 微生物固结裸土抗风蚀扬尘试验研究[D]. 焦作: 河南理工大学, 2020. [45] 詹其伟. 微生物捕碳浅层矿化胶结沙土及其抑尘应用[D]. 南京: 东南大学, 2018. [46] HAMMES F, VERSTRAETE W. Key roles of pH and calcium metabolism in microbial carbonate precipitation[J]. Reviews in Environmental Science and Biotechnology, 2002, 1(1): 3-7. [47] 王恒星,缪林昌,孙潇昊,等. 微生物诱导固化技术研究进展[J]. 湖南大学学报(自然科学版),2021, 48(1): 70-81. [48] AL QABANY A, SOGA K, SANTAMARINA C. Factors affecting efficiency of microbially induced calcite precipitation[J]. Journal of Geotechnical and Geoenvironmental Engineering,2012, 138(8): 992-1001. [49] QABANY A A, SOGA K. Effect of chemical treatment used in MICP on engineering properties of cemented soils[J]. Géotechnique, 2013, 63(4): 331-339. [50] 程瑶佳,唐朝生,谢约翰,等. 微生物诱导碳酸钙沉积技术改性黄土结构强度试验研究[J]. 工程地质学报, 2021, 29(1): 44-51. [51] MEYER F D, BANG S, MIN S, et al. Microbiologically-induced soil stabilization: application of Sporosarcina pasteurii for fugitive dust control[C]//Geo-frontiers 2011: Advances in Geotechnical Engineering. 2011: 4002-4011. [52] SAHIN U, ANGIN I, KIZILOGLU F M. Effect of freezing and thawing processes on some physical properties of saline-sodic soils mixed with sewage sludge or fly ash[J]. Soil and Tillage Research, 2008, 99(2): 254-260. [53] VAN BOCHOVE E, PRÉVOST D, PELLETIER F. Effects of freeze-thaw and soil structure on nitrous oxide produced in a clay soil[J]. Soil Science Society of America Journal, 2000, 64(5): 1638-1643. [54] SAHIN U, ANAPALI O. Short communication: the effect of freeze-thaw cycles on soil aggregate stability in different salinity and sodicity conditions[J]. Spanish Journal of Agricultural Research, 2007, 5(3): 431-434. [55] OZTAS T, FAYETORBAY F. Effect of freezing and thawing processes on soil aggregate stability[J]. Catena, 2003, 52(1): 1-8. [56] 王恩姮,赵雨森,陈祥伟. 典型黑土耕作区土壤结构对季节性冻融的响应[J]. 应用生态学报,2010, 21(7): 1744-1750. [57] LEHRSCH G A, SOJKA R E, CARTER D L, et al. Freezing effects on aggregate stability affected by texture, mineralogy, and organic matter[J]. Soil Science Society of America Journal, 1991, 55(5):1401-1406. [58] 陈四利,赵百超,侯芮. 冻融循环作用下水泥土疲劳特性[J]. 沈阳工业大学学报, 2021, 43(6): 692-697. [59] 温美丽,刘宝元,魏欣,等. 冻融作用对东北黑土容重的影响[J]. 土壤通报, 2009, 40(3): 492-495. [60] 齐吉琳,程国栋,VERMEER P A. 冻融作用对土工程性质影响的研究现状[J]. 地球科学进展, 2005, 20(8): 887-894. [61] 樊贵盛. 影响冻融土壤水分入渗特性主要因素的试验研究[J]. 农业工程学报,1999(4): 88-94. [62] 苏谦,唐第甲,刘深. 青藏斜坡黏土冻融循环物理力学性质试验[J]. 岩石力学与工程学报,2008,27(增刊1): 2990-2994. [63] 董晓宏,张爱军,连江波,等. 反复冻融下黄土抗剪强度劣化的试验研究[J]. 冰川冻土, 2010, 32(4): 767-772. [64] 王大雁,马巍,常小晓,等. 冻融循环作用对青藏黏土物理力学性质的影响[J]. 岩石力学与工程学报,2005,24(23): 4313-4319. [65] 齐吉琳,张建明,朱元林. 冻融作用对土结构性影响的土力学意义[J]. 岩石力学与工程学报,2003,22(增刊2): 2690-2694. [66] 汪恩良,姜海强,张栋,等. 冻融作用对土体物理力学性质影响研究进展[J]. 东北农业大学学报,2017, 48(5): 82-88. [67] 严晗,刘建坤,王天亮. 冻融对粉砂土力学性能影响的试验研究[J]. 北京交通大学学报, 2013, 37(4): 73-77. [68] SIMONSEN E, JANOO V C, ISACSSON U. Resilient properties of unbound road materials during seasonal frost conditions[J]. Journal of Cold Regions Engineering,2002, 16(1): 28-50. [69] 倪万魁,师华强. 冻融循环作用对黄土微结构和强度的影响[J]. 冰川冻土,2014, 36(4): 922-927. [70] VIKLANDER P. Laboratory study of stone heave in till exposed to freezing and thawing[J]. Cold Regions Science and Technology, 1998, 27(2): 141-152. [71] 许健,栾桂涛. 黄土地区边坡冻融灾害发生机理研究[M]. 北京:科学出版社, 2018. [72] 谢胜波,屈建军,韩庆杰. 青藏高原冻融风蚀形成机理的实验研究[J]. 水土保持通报,2012, 32(2): 64-68. [73] 李宝安. 冻融循环和干湿交替对黄土力学性质的影响及其在边坡工程中的应用[D]. 兰州:兰州理工大学, 2017. [74] 石长安. 冻融循环作用对黄土力学性质影响的试验研究[D]. 西安:西京学院, 2019. [75] XU J, REN J, WANG Z, et al. Strength behaviors and meso-structural characters of loess after freeze-thaw[J]. Cold Regions Science and Technology,2018, 148: 104-120. [76] XU J, LI Y, LAN W, et al. Shear strength and damage mechanism of saline intact loess after freeze-thaw cycling[J/OL]. Cold regions science and technology,2019, 164[2022-10-24].https://doi.org/10.1016/j.coldregions.2019.05.005. [77] 荣辉,钱春香,王欣. 微生物水泥基材料抗冻性和抗冲刷性[J]. 功能材料,2014, 45(11): 11091-11095. [78] 高瑜,姚德,秦骁,等. 盐蚀环境下微生物矿化岩土材料的冻融特性研究[J]. 防灾减灾工程学报, 2018, 38(5): 787-794. [79] 韩红伟. 微生物诱导固化土工材料冻融及紫外侵蚀特性试验研究[D]. 呼和浩特: 内蒙古工业大学, 2019. [80] 秦骁. 微生物诱导矿化材料耐候性能试验研究[D]. 呼和浩特: 内蒙古工业大学, 2017. [81] 黄明,张瑾璇,靳贵晓,等. 残积土MICP灌浆结石体冻融损伤的核磁共振特性试验研究[J]. 岩石力学与工程学报,2018, 37(12): 2846-2855. [82] 洪晨阳. 冻融循环对微生物改良砂力学特性的影响[D]. 哈尔滨: 哈尔滨工业大学, 2019.
点击查看大图
计量
- 文章访问数: 20
- HTML全文浏览量: 2
- PDF下载量: 0
- 被引次数: 0