Study of Pullout Tests on Plastic Geogrids with Vertical Stiffener Ribs of Aluminum Angles
-
摘要: 为提升普通塑料土工格栅与填料之间的界面强度,在格栅横肋上部固定角铝作为齿筋,构造一种新型立体筋材——带齿塑料格栅。通过开展不同组合工况下带齿塑料格栅室内拉拔试验,探索其在砂土填料中的抗拔特性及其参数特征。研究结果表明:1)法向应力较低时,拉拔曲线出现明显峰值,在考察范围内表现为应变软化特征;2)随着法向应力的增大,带齿塑料格栅极限拉拔力明显增大。同一法向应力下,极限拉拔阻力与齿筋高度近似呈线性正相关;3)带齿塑料格栅的加筋效果系数、界面抗剪强度参数、似摩擦系数、拉拔系数均随着齿筋高度的增大而增大,表明含有齿筋的三维立体筋材可以切实有效地提高加筋土复合体的抗拔强度,对改善土体稳定性具有积极意义。Abstract: To improve the interfacal strength between ordinary plastic geogrids and fillers, a new type of three-dimensional reinforcement materials —plastic geogrids with vertical ribs of aluminum angles was constructed by fixing aluminum angles as vertical stiffener ribs on the top of the transverse ribs of plastic geogrids. The pullout resistance characteristics and their parameter features of plastic geogrids with vertical stiffener ribs of aluminum angles in sandy fillers were explored by indoor pullout tests in different combined working cases. The results indicated that:1) the pullout curves had an obvious peak value in the stage of lower normal compressive stress, which were characterized by strain softening within the observed range; 2) with the increase in normal compressive stress, the ultimate pullout resistance of plastic geogrids with vertical stiffener ribs of aluminum angles increased obviously. Under the same normal stress, the ultimate pullout resistance was approximately linearly and positively correlated with the height of the vertical stiffener ribs of aluminum angles. 3)The reinforcement effect coefficient, interface shear strength parameter, friction-like coefficient, and pullout coefficient of plastic geogrids with vertical ribs of aluminum angles increased with the increase in the height of the vertical stiffener ribs of aluminum angles, which indicated that three-dimensional reinforcement materials with vertical stiffener ribs of aluminum angles could effectively improve the pullout rasistance strength of the reinforced soil complex, and had positive significance for improving the stability of soil.
-
[1] 李志清,胡瑞林,付伟,等. 土工格栅在加固高速公路路堤中的应用研究[J]. 岩土力学,2008,147(3):795-799. [2] 曹玉新,许兰民,沈宇鹏. 土工格栅在青藏铁路多年冻土区的应用[J]. 北京交通大学学报,2008(1):16-19. [3] ZHANG R,LONG M X,LAN T,et al. Stability analysis method of geogrid reinforced expansive soil slopes and its engineering application[J].Journal of Central South University,2020,27(7):1965-1980. [4] 崔新壮,王艺霖,姜鹏等. 超静定土工格栅节点在筋土相互作用中的机理研究:极限被动摩阻力计算方法[J]. 中国公路学报,2022 (7):1-15. [5] 兰天,张锐,郑健龙,等. 土工格栅与膨胀土相互作用模型试验研究[J]. 中南大学学报(自然科学版),2022,53(1):190-198. [6] 王军,林旭,刘飞禹,等. 砂土与格栅界面相互作用的直剪试验研究[J]. 岩土力学,2014,35(增刊1):113-120. [7] 包承纲. 土工合成材料界面特性的研究和试验验证[J]. 岩石力学与工程学报,2006(9):1735-1744. [8] 朱顺然,徐超,丁金华. 土工织物-砂土界面的叠环式剪切试验[J]. 岩土力学,2018,39(5):1775-1780,1788. [9] 靳静,杨广庆,刘伟超.横肋间距对土工格栅拉拔特性影响试验研究[J]. 中国铁道科学,2017, 38(5):1-8. [10] MOSALLANEZHAD M, TAGHAVI S H S, HATAF N, et al. Experimental and numerical studies of the performance of the new reinforcement system under pull-out conditions[J]. Geotextiles and Geomembranes, 2016, 44(1):70 -80. [11] MOSALLANEZHAD M, ALFARO M C, HATAF N, et al. Performance of the new reinforcement system in the increase of shear strength of typical geogrid interface with soil[J]. Geotextiles and Geomembranes,2016, 44(1): 457-462. [12] MAKKAR F M, CHANDRAKARAN S, SANKAR N. Experimental investigation of response of different granular soil-3d geogrid interfaces using large-scale direct shear tests[J]. Journal of Materials in Civil Engineering, 2019, 31(4):1-14. [13] 蔡春,张孟喜,赵岗飞,等. 带加强肋单向土工格栅的拉拔试验[J]. 岩土力学,2012,33(1):53-59,64. [14] 李磊,张孟喜,周小凤,等. 带加强节点双向土工格栅的拉拔试验研究[J]. 水利学报,2012,43(12):1494-1499,1506. [15] 林永亮,张波,张孟喜,等. 网格状带齿加筋体界面特性的宏细观力学机制研究[J]. 岩土力学,2013,34(10):2863-2868. [16] 赵岗飞,张孟喜,蔡春,网格状带齿加筋的拉拔特性[J]. 上海大学学报(自然科学版),2011,17(6):785-791. [17] 李贵超,张孟喜. 带加强锚固片的双向土工格栅拉拔试验研究[J]. 水力发电学报,2017,36(5):104-111. [18] 张孟喜,张石磊. H-V加筋土性状的颗粒流细观模拟[J]. 岩土工程学报,2008(5):625-631. [19] 张孟喜,周淮. 条带式带齿加筋砂土挡墙的模型试验[J]. 中国科学(E辑:技术科学),2009(1):48-56. [20] 张孟喜,黄超. 刚性条带式带齿加筋土的极限拉拔力模型[J]. 岩土工程学报,2009,31(9):1336-1344. [21] 蔡春,张孟喜. 带加强肋土工格栅的极限拉拔阻力分析[J]. 岩土力学,2011,32(增刊2):340-345. [22] 侯娟,张孟喜,张陶陶,等. 横-竖立体加筋地基中附加应力的分析计算[J]. 岩土力学,2015,36(增刊2):702-708. [23] 张孟喜,马原,邱成春. 加强节点布置方式对双向土工格栅拉拔特性的影响[J]. 上海交通大学学报,2020,54(12):1307-1315. [24] 方薇,陈向阳,杨果林. 带齿格栅加筋挡墙工作机理的数值模拟研究[J]. 公路交通科技,2017,34(1):32-38. [25] 中华人民共和国住房和城乡建设部. 土工试验方法标准:GB/T 50123—2019[S]. 北京:中国计划出版社,2019. [26] MIRZAALIMOHAMMADI A, GHAZAVI M, ROUSTAEI M, et al. Pullout response of strengthened geosynthetic interacting with fine sand[J]. Geotextiles and Geomembranes, 2019, 47(4):530-541.
点击查看大图
计量
- 文章访问数: 34
- HTML全文浏览量: 3
- PDF下载量: 0
- 被引次数: 0