Influencing Factors and Corresponding Values of Ultimate Shaft Resistance and Tip Resistance Coefficients for Piles of Rock-Socketed Sections
-
摘要: 我国各行业技术标准对嵌岩桩抗压和抗拔极限承载力组成假设基本相同,采用极限侧阻力系数ξs和端阻力系ξb乘以岩石单轴抗压强度fucs计算嵌岩段桩极限侧阻力和端阻力的方法也相同。但各标准关于ξs和ξb确定的原则不同,取值大小也存在一定差异。基于已有试验成果分析了桩端嵌岩条件(桩径、嵌岩深度和嵌岩深径比)和岩石单轴抗压强度对嵌岩段桩极限侧阻力和侧阻力系数、极限端阻力和端阻力系数的影响规律。结果表明:桩径与嵌岩段桩极限侧阻和端阻力系数间无显著统计相关性。随嵌岩深度和嵌岩深径比增大,嵌岩段桩极限侧阻和端阻力系数总体呈下降趋势,且存在最佳嵌岩深度和嵌岩深径比使嵌岩段桩极限侧阻端阻力同时得到最大程度的发挥。嵌岩段桩极限侧阻和端阻力随岩石单轴抗压强度的增大而增大,但极限侧阻和端阻力系数则随岩石单轴抗压强度增大而减小。岩石强度是极限侧阻和端阻力系数最主要影响因素,且两者间具有较好统计相关性,并可分别采用ξs=0.436fucs-0.68和ξb=4.183fucs-0.79拟合计算。Abstract: The assumed composition of the ultimate compression and uplift bearing capacity of rock-socketed piles is essentially the same in current Chinese codes. In addition, the same method is adopted to calculate the ultimate shaft resistance and tip resistance of piles for rock-socketed sections by using the ultimate shaft resistance coefficient ξs and tip resistance coefficient ξb to multiply uniaxial compressive strength fucs of rock. However, the values of the aforementioned ξs and ξb in the criteria are quite different. Based on test data of rock-socketed piles under compression loads, influence laws of pile diameters, rock-socketed depths, ratios of rocketed depths to diameters, and uniaxial strength of rock on ultimate shaft resistance and shaft resistance coefficients as well as ultimate tip resistance and ultimate tip resistance coefficients of rock-socketed sections were analyzed. It was indicated that there was no significant correlation between pile diameters and ultimate shaft resistance coefficients as well as ultimate tip resistance coefficients of rock-socketed piles. With increase in rock-socketed depths and ratios of rocketed depths to diameters, the ultimate shaft resistance and ultimate tip resistance of rock-socketed piles generally decreased. There was an optimum rock-socketed depths and a ratio of rocketed depths to diameters, which could make the ultimate shaft resistance and tip resistance of rock-socketed sections played their roles most fully and coordinately. The ultimate shaft resistance and tip resistance increased but the ultimate shaft resistance coefficients and tip resistance coefficients decreased with increase in the uniaxial compressive strength of rock. The strength of rock was a significant factor to determine the coefficients of shaft resistance and tip resistance. There was a good statistical correlation between them, which could be respectively fitted as ξs=0.436 fucs-0.68 and ξb=4.183 fucs-0.79.
-
[1] 刘衡, 王铁行, 罗扬. 嵌岩桩承载性状研究现状综述[J]. 工业建筑, 2013, 43 (增刊1): 416-420. [2] 周予启, 阎培渝. 超大直径嵌岩桩沉降长期效应研究及实测[J]. 工业建筑, 2020, 50(9): 106-111. [3] 王卫东, 吴江斌, 王向军. 嵌岩桩嵌岩段侧阻和端阻综合系数研究[J]. 岩土力学, 2015, 36(增刊2): 289-295. [4] 中华人民共和国住房和城乡建设部.建筑地基基础设计规范:GB 50007—2011[S]. 北京:中国建筑工业出版社.2011. [5] 史佩栋, 梁晋渝. 嵌岩桩竖向承载力的研究[J]. 工业建筑, 1993, 23(7):38-43. [6] 中华人民共和国建设部.建筑桩基技术规范:JGJ 94—2008[S]. 北京:中国建筑工业出版社, 2008. [7] 中华人民共和国交通运输部. 码头结构设计规范:JTS 167—2018[S]. 北京:人民交通出版, 2018. [8] 中华人民共和国行业标准.公路桥涵地基与基础设计规范:JTG 3363—2019[S]. 北京:人民交通出版社, 2019. [9] 中华人民共和国国家铁路局.铁路桥涵地基和基础设计规范:TB 10093—2017[S]. 北京:中国铁道出版社, 2005. [10] 鲁先龙, 乾增珍, 杨文智, 等. 嵌岩桩嵌岩段的岩石极限侧阻力系数[J]. 土木建筑与环境工程, 2018, 40(6): 29-38. [11] 鲁先龙, 乾增珍, 杨文智, 等. 嵌岩桩的极限端阻力发挥特性及其端阻力系数[J].土木与环境工程学报(中英文), 2019, 41(4): 26-35. [12] WILLIAMS A F, PELLS P J N. Side resistance rock sockets in sandstone, mudstone, and shale[J]. Canadian Geotechnical Journal, 1981, 18(4): 502-513. [13] 刘金砺.桩基础设计与计算[M]. 北京: 中国建筑工业出版社, 1990. 85-95. [14] 刘树亚, 刘祖德. 嵌岩桩理论研究和设计中的几个问题[J]. 岩土力学, 1999, 20(4): 86-92. [15] 刘兴远, 郑颖人, 林文修.关于嵌岩桩理论研究的几点认识[J]. 岩土工程学报, 1998, 20(5):118-119. [16] 许锡宾, 周亮, 刘涛. 大直径嵌岩桩单桩承载性能的有限元分析[J]. 重庆交通大学学报(自然科学版), 2010, 29(6): 942-946. [17] ROWE R K, ARMITAGE H H. Theoretical solutions for axial deformation of drilled shifts in rock[J]. Canadian Geotechnical Journal, 1987, 24(1): 114-125. [18] ROSENBERG P, JOURNEAUX N L. Friction and end bearing tests on bed-rock for high capacity socket design[J]. Canadian Geotechnical Journal, 1976, 13(3): 324-333. [19] HORVATH R G, KENNEY T C, KOZICKI P. Methods of improving the performance of drilled piers in weak rock.[J]. Canadian Geotechnical Journal, 1983, 20(4), 758-772. [20] REESE L C, O’NEILL M W. Drilled shafts: Construction procedures and design methods[R]. Publication No. ADSC-TL-4. Washington, D.C.: International Association of Foundation Drilling, Federal Highway Administration, 1988. [21] ZHANG L. Analysis and design of axially loaded drilled shafts socketed into rock[D]. Cambridge: MIT, 1997. [22] CARRUBBA P. Skin friction of large-diameter piles socketed into rock[J]. Canadian Geotechnical Journal, 1997, 34(2): 230-240. [23] TENG W C. Foundation design[M]. Englewood Cliffs: Prentice-Hall, Inc., 1962. [24] COATES D F. Rock mechanics principles[M]. Ottawa: Energy Mines and Resources, 1967. [25] ZHANG L, EINSTEIN H H. End bearing capacity of drilled shafts in rock[R]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(7): 574-584. [26] VIPULANANDAN C., HUSSAIN A, USLUOGULARI O. Parametric study of open core-hole on the behavior of drilled shafts socketed in soft rock[C]//CAMP W, CASTELLI R, Laefer D F, et al. Contemporary Issues in Deep Foundations: Proceedings of Geo-Denver 2007. Reston: American Society for Civil Engineers, 2007:18-21.
点击查看大图
计量
- 文章访问数: 54
- HTML全文浏览量: 3
- PDF下载量: 1
- 被引次数: 0