中国科技核心期刊
中国建筑科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NiTi形状记忆合金棒材的循环拉伸试验及力学性能退化分析

俞昊然 李维滨

俞昊然, 李维滨. NiTi形状记忆合金棒材的循环拉伸试验及力学性能退化分析[J]. 工业建筑, 2025, 55(5): 152-162. doi: 10.3724/j.gyjzG22090904
引用本文: 俞昊然, 李维滨. NiTi形状记忆合金棒材的循环拉伸试验及力学性能退化分析[J]. 工业建筑, 2025, 55(5): 152-162. doi: 10.3724/j.gyjzG22090904
YU Haoran, LI Weibin. Cyclic Tensile Tests and Mechanical Property Degradation Analysis on NiTi Shape Memory Alloy Bars[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(5): 152-162. doi: 10.3724/j.gyjzG22090904
Citation: YU Haoran, LI Weibin. Cyclic Tensile Tests and Mechanical Property Degradation Analysis on NiTi Shape Memory Alloy Bars[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(5): 152-162. doi: 10.3724/j.gyjzG22090904

NiTi形状记忆合金棒材的循环拉伸试验及力学性能退化分析

doi: 10.3724/j.gyjzG22090904
详细信息
    作者简介:

    俞昊然,博士,yuhaoran9204@163.com。

    通讯作者:

    李维滨,liwbseu@vip.163.com。

Cyclic Tensile Tests and Mechanical Property Degradation Analysis on NiTi Shape Memory Alloy Bars

  • 摘要: 采用超弹性NiTi合金棒可以使结构获得良好的自复位性能,但由于NiTi合金棒在工作中会出现不同程度的力学性能退化,致使结构的自复位与耗能能力受到削弱,因此,有必要对NiTi形状记忆合金棒材的力学性能稳定性作进一步研究。对4根经过不同热处理的Ti-50.8%Ni棒材进行常幅循环拉伸试验,研究了循环次数和不同热处理条件对棒材试件的滞回曲线形态、相变应力、弹性模量、残余应变、耗能能力等性能的影响,并对不同棒材试件的力学性能退化进行了比较分析。研究表明:常幅循环拉伸下NiTi合金棒材的弹性模量与极限应力变化相对较小,而相变应力、变形回复率以及等效阻尼比退化较为明显;材料的马氏体正相变应力相比逆相变应力降低幅度更大,且超弹性较好的NiTi合金棒材相变应力退化更明显;热处理温度过高或过低均会导致NiTi合金棒材的超弹性劣化,且棒材在循环工作中耗能能力会出现大幅下降。
  • [1] MORGAN N B. Medical shape memory alloy applications-the market and its products[J]. Material Science and Engineering,2004,378(1):16-23.
    [2] OLANDER A. An electrochemical investigation of solid cadmium gold alloys[J]. Journal of the American Chemical Society,1932,54(10):3819-3833.
    [3] BUEHLER W J,GILFRICH J V,WILRY R C. Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi[J]. Journal of Physics,1963(34):1475-1477.
    [4] LIU Y,XIE Z,HUMBEECK J,et al. Asymmetry of stress-strain curves under tension and compression for NiTi shape memory alloys[J]. Acta Materialia,1998,46(12):4325-4338.
    [5] MCCORMICK J. Cyclic behavior of shape memory alloys:material characterization and optimization[D]. Atlanta,GA:Georgia Institute of Technology,2006.
    [6] WANG W,FANG C,LIU J. Large size superelastic SMA bars:heat treatment strategy,mechanical property and seismic application[J]. Smart Materials& Structures,2016,25(7),075001.
    [7] WANG W,CHAN T M,SHAO H. Numerical investigation on I-beam to CHS column connections equipped with NiTi shape memory alloy and steel tendons under cyclic loads[J]. Structures,2015,4(5):114-124.
    [8] 商泽进,王忠民,尹冠生,等. 循环加载条件下TiNi形状记忆合金棒材的超弹性行为[J]. 实验力学,2008,23(4):305-310.
    [9] 郑碧玉,商泽进,王忠民. 加载速率对超弹性TiNi形状记忆合金棒材力学行为的影响[J]. 机械科学与技术,2008,27(9):1236-1238.
    [10] 王伟,邵红亮. 不同直径NiTi形状记忆合金棒材的超弹性试验研究[J]. 结构工程师,2014(3):168-174.
    [11] WANG W,CHAN T,SHAO H,et al. Cyclic behavior of connections equipped with NiTi shape memory alloy and steel tendons between H-shaped beam to CHS column[J]. Engineering Structures,2015,88:37-50.
    [12] SPEICHER M,DESROCHES S R,LEON R T. Experimental results of a NiTi shape memory alloy(SMA)-based recentering beam-column connection[J]. Journal of Structural Engineering-ASCE,2011,33(9):2448-2457.
    [13] FARMANI M,GHASSEMIEH M. Steel beam-to-column connections equipped with SMA tendons and energy dissipating devices including shear tabs or web hourglass pins[J]. Journal of Constructional Steel Research,2017,135:30-48.
    [14] 武振宇,何小辉,张耀春,等. 采用马氏体镍钛形状记忆合金螺杆的钢框架梁柱节点滞回性能试验研究[J]. 建筑结构学报,2011,32(10):97-106.
    [15] WANG B,JIANG H J,WANG J J. Numerical simulation and behavior insights of steel columns with SMA bolts towards earthquake resilience[J]. Journal of Constructional Steel Research,2019,161:285-295.
    [16] WANG B,ZHU S Y,QIU C X,et al. High-performance self-centering steel columns with shape memory alloy bolts:design procedure and experimental evaluation[J]. Engineering Structures,2019,182:446-458.
    [17] ABDULRIDHA A,PALERMO D. Behaviour and modelling of hybrid SMA-steel reinforced concrete slender shear wall[J]. Engineering Structures,2017,147:77-89.
    [18] QIU C X,LIU J W,DU X L. Cyclic behavior of SMA slip friction damper[J]. Engineering Structures,2022,250(1),113407.1.
    [19] QIU C X,LIU J W,DU X L. Analytical and numerical study on the cyclic behavior of buckling-restrained SMA-based selfcentering damper[J]. Smart Materials and Structures,2021,30(9). DOI:10.1088/1361-665X/ac177e.
    [20] 邱灿星,刘家旺,杜修力. SMA滑动摩擦阻尼器的数值模拟及参数分析[J]. 工程力学,2022,39(8):69-79.
    [21] 全国钢标准化技术委员会. 金属材料 拉伸试验 第1部分:室温试验方法:CB/T 228.1—2021

    [S]. 北京:中国标准出版社,2021.
    [22] MILLER D J,FAHNESTOCK L A,EATHERTON M R. Development and experimental validation of a nickel-titanium shape memory alloy self-centering buckling-restrained brace[J]. Engineering Structures,2012,40:288-298.
    [23] TYBER J,MCCORMICK J,GALL K,et al. Structural engineering with NiTi I:basic materials characterization[J]. Journal of Engineering Mechanics,2007,133(9):1009-1018.
    [24] 程光明. 基于形状记忆合金的自复位钢连梁研究[D]. 杭州:浙江大学,2018.
    [25] DESROCHES R,MCCORMICK J,DELEMONT M. Cyclic properties of superelastic shape memory alloy wires and bars[J]. Journal of Structural Engineering,2004,130(1):38-46.
    [26] TREADWAY J,ABOLMAALI A,LU F,et al. Tensile and fatigue behavior of superelastic shape memory rods[J]. Materials and Design,2015,86:105-113.
    [27] WANG W,FANG C,LIU J. Self-centering beam-to-column connections with combined superelastic SMA bolts and steel angles[J]. Journal of Structural Engineering,2016,143(2),4016175.1.
    [28] 董金芝. 基于大直径SMA棒材自复位装置的试验研究[J]. 结构工程师,2018,34(4):101-108.
    [29] XU X,CHENG G,ZHENG J. Tests on pretrained superelastic NiTi shape memory alloy rods:towards application in self-centering link beams[J]. Advances in Civil Engineering,2018,Pt. 2,2037376.1.
    [30] KANG L,QIAN H,GUO Y,et al. Investigation of mechanical properties of large shape memory alloy bars under different heat treatments[J]. Materials,2020,13(17). DOI:10.3390/ma13173729.
    [31] 康莉萍,钱辉,郭院成,等. 不同热处理工艺的大直径形状记忆合金棒力学性能试验研究[J]. 功能材料,2021(1):1185-1191.
    [32] 陈芳. 循环加载下热处理对NiTi记忆合金丝超弹性变形行为和寿命的影响[J]. 机械工程师,2009(10):21-22.
    [33] 韦捷亮,庄鹏,王孟鸿,等. 超弹性形状记忆合金棒的力学性能试验[J]. 建筑技术开发,2014,41(5):33-38.
    [34] FRICK C P,ORTEGA A M,TYBER J,et al. Thermal processing of polycrystalline NiTi shape memory alloys[J]. Materials Science and Engineering:A,2005,405(1/2):34-49.
    [35] EUCKEN S,DUERIG T W. The effects of pseudoelastic prestraining on the tensile behaviour and two-way shape memory effect in aged NiTi[J]. Acta Metallurgica,1989,37(8):2245-2252.
    [36] MIYAZAKI S,IMAI T,IGO Y,et al. Effect of cyclic deformation on the pseudoelasticity characteristics of Ti-Ni alloys[J]. Metallurgical Transactions A,1986,17:115-120.
    [37] 张振华,李倩倩,王磊,等. NiTi合金伪弹性退化规律及尺度效应的试验研究[J]. 实验力学,2016,31(5):707-714.
    [38] 康国政,于超,阚前华. NiTi形状记忆合金热-力耦合循环变形行为宏微观实验和理论研究进展[J]. 固体力学学报,2015,36(6):461-480.
    [39] 巩建鸣,户伏寿昭. 承受各种循环加载的TiNi形状记忆合金的超弹性变形行为[J]. 功能材料,2002,33(4):391-393.
  • 加载中
计量
  • 文章访问数:  49
  • HTML全文浏览量:  14
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-09
  • 网络出版日期:  2025-07-15

目录

    /

    返回文章
    返回