Analysis on Bearing Characteristics of Pile Groups with Post-Grouting at Pile Ends in Loess Areas
-
摘要: 通过研究现场两根钻孔灌注单桩注浆前、后承载特性的变化,运用Vesic理论推导得到现场试验条件下桩端压密注浆后水泥浆液的塑性影响区半径。利用ABAQUS软件建立单桩模型以及考虑桩数、桩距、注浆情况的2×2(桩间距变化范围为2~6倍桩径),3×3(桩间距为3倍桩径)的群桩模型,研究桩端注浆对桩基沉降量、桩端阻力、桩侧阻力、端阻比的影响。结果表明:桩间距相同时,随桩数的增多,群桩基础注浆承载力发挥效率减弱;不同桩间距的2×2群桩基础注浆后承载力由大到小的桩距排序为: 5、6、4、3倍桩径;桩间距为5倍桩径时,桩端扩大头的黏结作用和群桩效应得到了最大程度的发挥;同一工况下,注浆后端阻比显著提高,桩数相同时,端阻比随桩间距的增大而逐渐减小;桩间距较小时,桩端阻力相较于桩侧摩阻力提高更明显。由于边桩、角桩和桩周土体形成的整体在桩基沉降过程中对中桩的夹持作用,角桩和边桩的桩侧摩阻力先于中桩发挥,桩侧摩阻力由大到小排序为:角桩、边桩、中桩。Abstract: By studying the variations of bearing capacity characteristics of two bored piles before and after being grouted, the radius of the plastic influential zone of cement pastes after being compactedly grouted at pile ends was derived by Vesic’ s theory. A single pile model and pile group models considering different quantities of piles, pile spacing, and grouting conditions were respectively constructed, in which the pile spacing was 2 to 6-times pile diameters for 2×2 pile groups and 3-times pile diameters for 3×3 pile groups. Then, the effect of grouting at pile ends on settlement, pile end resistance, pile side resistance, and ratios of pile end resistance and total resistance were studied. The conclusions were that the grouting bearing capacity efficiency for pile group foundations dropped with an increase in pile quantities in the same pile space. The order of the bearing capacity of 2×2 pile group foundations from large to small was the foundation with pile space of 5-, 6-, 4-, and 3-times pile diameters. When the pile spacing was 5-times pile diameters, the bonding effect of expanding heads of pile ends and pile group effect were maximized. In the same working condition, the ratio of end resistance and total resistance was significantly enhanced after being grouted, while in the same quantity of piles, the ratio of end resistance and total resistance dropped gradually with an increase in pile space. When the pile space was smaller, the end resistance of piles increased more apparently than the side friction resistance of piles. As the ferrule effect by side piles, corner piles and surrounding soil on middle piles in settlement processes of pile foundations, lateral friction resistance of corner piles and side piles worked earlier than that of middle piles. The order of lateral friction resistance from large to small was that of corner piles, side piles and middle piles.
-
[1] ZHOU Z J, WANG K C, FENG H M, et al. Centrifugal model test of post-grouting pile group in loess area[J]. Soil Dynamics and Earthquake Engineering, 2021, 151:89-104. [2] CHEN Y J, LIN W Y, Topacio A, et al. Evaluation of interpretation criteria for drilled shafts with tip post-grouting[J]. Soils and Foundations, 2021, 61(5):1354-1369. [3] ZHOU Z J, XU F, LEI J T, et al. Experimental study of the influence of different hole-forming methods on the bearing characteristics of the post-grouting pile in loess areas[J/OL]. Transportation Geotechnics, 2021, 27[2022-09-02]. https://doi.org/10.1016/j.trgeo.2020.100423. [4] 刘亦民,饶少华,万志辉,等.超高层建筑大直径钻孔灌注桩后压浆技术的应用与研究[J].建筑结构, 2022, 52(增刊1):2793-2797. [5] RUIZ M E, PANDO M A. load transfer mechanisms of tip post-grouted drilled shafts in sand[C]//Proceedings of International Foundation Congress and Equipment Expo 2009. Reston:ASCE, 2009:23-30. [6] 戴国亮,万志辉.后压浆桩增强效应作用机制及荷载沉降关系研究[J].岩土工程学报, 2017, 39(12):2235-2244. [7] 张志彤,龚维明,解江,等.后压浆桩竖向承载力概率极限状态设计方法(英文)[J]. Journal of Southeast University (English Edition), 2022, 38(2):166-170. [8] NISHIMURA S, TAKEHANA K, MORIKAWA Y, et al. Experimental study of stress changes due to compaction grouting[J] Soils and Foundations, 2011, 51(6):1037-1049. [9] THIYYAKKANDI S, MCVAY M, BLOOMQUIST D, et al. Experimental study, numerical modeling of an axial prediction approach to base grouted drilled shafts in cohesionless soils[J]. Acta Geot Technica, 2014, 9(3):439-454. [10] 李龙起,赵皓璆.竖直荷载作用下倾斜群桩受力及桩身变形性状研究[J].重庆交通大学学报(自然科学版), 2022, 41(3):72-78. [11] 任光明,伍禹安,范荣全,等.粉质黏土地区微型桩群桩基础群桩效应研究[J].成都理工大学学报(自然科学版), 2022, 49(1):111-118. [12] ZHANG R K, SHI M, ZHANG H, et al. The enhancement effect analysis of pile-base post-grouting piles[J]. Applied Mechanics and Materials, 2012(170/171/172/173):227-231. [13] WANG B, ZHANG J. Mechanical mechanism of the post-grouting pile[J]. Applied Mechanics and Materials, 2013, 351, 352:510-514. [14] FANG K, ZHAO T B, TAN Y L, et al. Prediction of grouting penetration height along the shaft of base grouted pile[J/OL]. Journal of Marine Science and Engineering, 2019, 7(7)[2022-09-02]. https://doi.org/10.3390/jmse7070212. [15] 孔锴.饱和含黏性土砾石层中桩端后压浆设计参数优化研究[D].南京:东南大学, 2016. [16] 刘颖,张立明,郑刚.不同长度单桩桩端压浆效果有限元分析[J].岩土工程学报, 2011, 33(增刊2):88-94. [17] 熊彩凤,徐甫,冯泓鸣,等.黄土地区桥梁灌注桩桩端后注浆优化室内模型试验研究[J].铁道科学与工程学报, 2022(6):1-9. [18] WAN Z H, DAI G, LGONG W M. Field study on post-grouting effects of cast-in-place bored piles in extra-thick fine sand lavers[J]. Acta Geotechnica, 2019, 14(5):1357-1377. [19] 薛振年,冯泓鸣,任晨宁,等.黄土地区桥梁灌注桩桩侧-桩端联合压浆模型试验[J].长安大学学报(自然科学版), 2021, 41(6):19-28. [20] 朱铮.钻孔灌注桩后压浆参数研究[D].南京:东南大学, 2020. [21] 周亚龙,王旭,张延杰,等.灌注桩基础桩底复合式后注浆及承载特性研究[J].岩土工程学报, 2022, 44(10):1-10. [22] 赵春风,刘鹏伟,赵程,等.黏性土中桩侧后注浆单桩抗压承载性能室内模型试验研究[J/OL].土木与环境工程学报(中英文), 1-7[2024-05-06]. http://kns.cnki.net/kcms/detail/50.1218. TU.20220309.1521.002.html. [23] 周志军,徐天宇,徐甫,等.黄土地区不同成孔方式灌注桩压浆前后承载特性[J].交通运输工程学报, 2021, 21(4):84-93. [24] LU Y, TAN Y, LAN H. full-scale load testing of 75-90 m long post-grouted drilled shafts in Suzhou stiff clay[J]. Test Eval, 2019, 47(1):1-26. [25] POULOS H G. Analysis of the settlement of pile groups[J]. Geotechnique, 1968, 18(4):449-471. [26] 任青,黄茂松.分层地基中柔性高承台群桩基础的竖向振动特性[J].土木工程学报, 2009, 42(4):107-113. [27] 赫中营,叶爱君.群桩效应对砂土地基中高桩承台群桩基础抗震性能的影响[J].土木工程学报, 2014, 47(1):117-126. [28] 凌贤长,唐亮.液化场地桩基侧向响应分析中p-y曲线模型研究进展[J].力学进展, 2010, 40(3):250-262. [29] 王晓伟, GUILLERMO B,叶爱君,等.砂土中桥梁高桩承台基础的抗震延性能力参数分析[J].土木工程学报, 2018, 51(5):112-121. [30] 朱云祥,陈哲,施首健.单桩竖向承载力试验的有限元模拟[J].低温建筑技术, 2020, 260(2):107-110. [31] 王先军,周文宇,蒋鑫. ANSYS在模拟桩土接触中的应用[J].森林工程, 2006(3):49-51. [32] 王幼青,周宏.桩基承台阻力及载荷沉降关系研究[J].低温建筑技术, 2006(4):94-95. [33] 王瑞芳. ANSYS分析灌注桩的桩土共同工作机理[J].武汉科技大学学报(自然科学版), 2006(3):293-296. [34] 瞿书舟,高志伟,唐天国.竖向静载下群桩承载力及变形分析[J].建筑结构, 2017, 47(增刊1):1054-1058. [35] 杜思义,石磊.竖向荷载下群桩受力特性研究[J].郑州大学学报(工学版), 2015, 36(4):67-71. [36] CHANDRASEKARAN S S, BOOMINATHAN A, DODAGOUDAR G R. Dynamic response of laterally loaded pile groups in clay[J]. Journal of Earthquake Engineering, 2012, 17(1):33-53. [37] DANNO K, ISOBEK, KIMURA M. Pile group effect on end bearing capacity and settlement of pile foundation[J]. Japanese Geotechnical Journal, 2008, 3(1):73-83. [38] 孔纲强,顾红伟,周立朵,等.低承台扩底模形桩群桩效应系数研究[J].岩土力学, 2016, 37(增刊2):461-468. [39] 戴国亮,戴永兴,茅燕兵,等.软土群桩原位足尺试验研究[J].岩土工程学报, 2015, 37(增刊2):158-163. [40] VESIC A S. Expansion of cavities in infinite soil mass[J]. Soil Mech Found Div, ASCE, 1972, 98(SM3):265-290. [41] 龚维明,戴国亮,黄根生.大型深水桥梁钻孔桩桩端后压浆技术[M].北京:人民交通出版社, 2009. [42] 李锋,王康超,朱珊珊,等.黄土地区桩端注浆群桩承载特性[J].铁道科学与工程学报, 2021, 18(12):3210-3218.
点击查看大图
计量
- 文章访问数: 67
- HTML全文浏览量: 17
- PDF下载量: 4
- 被引次数: 0