中国科技核心期刊
中国建筑科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冻融循环作用下土石混合体水热传输及冻融特性研究

王寅栋 路建国 万旭升 谭俐伶 邓菲 周小勋

赵晓青, 常好诵, 陈佳宇, 杨东磊. 三腹板圆弧过渡式支座钢吊车梁疲劳试验研究[J]. 工业建筑, 2019, 49(6): 45-48. doi: 10.13204/j.gyjz201906008
引用本文: 王寅栋, 路建国, 万旭升, 谭俐伶, 邓菲, 周小勋. 冻融循环作用下土石混合体水热传输及冻融特性研究[J]. 工业建筑, 2024, 54(3): 174-181. doi: 10.3724/j.gyjzG22082708
WANG Yindong, LU Jianguo, WAN Xunsheng, TAN Lilin, DENG Fei, ZHOU Xiaoxun. Study on Characteristics of Hydro-Thermal Transfer and Freezing-Thawing of Soil-Rock Mixtures[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(3): 174-181. doi: 10.3724/j.gyjzG22082708
Citation: WANG Yindong, LU Jianguo, WAN Xunsheng, TAN Lilin, DENG Fei, ZHOU Xiaoxun. Study on Characteristics of Hydro-Thermal Transfer and Freezing-Thawing of Soil-Rock Mixtures[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(3): 174-181. doi: 10.3724/j.gyjzG22082708

冻融循环作用下土石混合体水热传输及冻融特性研究

doi: 10.3724/j.gyjzG22082708
基金项目: 

国家自然科学基金项目(42101136);四川省自然科学基金项目(2022NSFSC042);中国博士后科学基金(2021M692697);冻土工程国家重点实验室开放基金项目(SKLFSE202007)。

详细信息
    作者简介:

    王寅栋,硕士研究生,主要从事寒区工程与材料研究, 202122000837@stu.swpu.edu.cn。

    通讯作者:

    路建国,博士,副研究员,主要从事寒区工程与材料研究, jiangguog@swpu.edu.cn。

Study on Characteristics of Hydro-Thermal Transfer and Freezing-Thawing of Soil-Rock Mixtures

  • 摘要: 冻融循环中含石率是影响土石混合体水热传输及冻融特性的关键因素之一。为研究冻融循环对土石混合体水热传输及冻胀融沉规律的影响,试验选用青藏粉质黏土与砾石组成的不同含石率(10%、25%、40%)的土石混合体为研究对象,进行10次单向冻融循环试验。结果表明:冻融循环中土石混合体的温度及未冻水含量的差异性与含石率具有强相关性,随着含石率的增大,土石混合体完全冻结的时间延长,未冻水含量变化速度降低;埋深的不同主要影响土石混合体的温度传输,进而影响试样的未冻水含量。对于含石率为10%、40%的试样,位移变化表现为冻结时的收缩和融化时的膨胀,试样冻结时的收缩率随含石率的增大而减小。
  • [1] 廖秋林,李晓,董艳辉,等.川藏公路林芝-八宿段地质灾害特征及形成机制初探[J].地质力学学报, 2004, 10(1):33-39.
    [2] 中华人民共和国建设部.岩土工程勘察规范:GB 50021-2001[S].北京:中国建筑工业出版社, 2009.
    [3] LI X, LIAO Q L, HE J M. In situ tests and a stochastic structural model of rock and soil aggregate in the Three Gorges reservoir area, China[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(3):494-500.
    [4] 殷跃平.长江三峡库区移民迁建新址重大地质灾害及其防治研究[M].北京:地质出版社, 2004.
    [5] CHANG W J, THITIBHORN P. Effects of gravel content on shear resistance of rockly soils[J]. Engineering Geology, 2016, 207:78-90.
    [6] CHU F Y. Study on engineering characteristics of coarse-grained soil based on large-scale triaxial test[J]. Materials Science and Engineering Technology, 2014, 936:1395-1400.
    [7] ZHANG Z L, XU W J, XIA W, et al. Large-scale in-situ test for mechanical characterization of soil-rock mixture used in an embankment dam[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 86:317-322.
    [8] 王宇,李晓,赫建明,等.土石混合体细观特性研究现状及展望[J].工程地质学报, 2014, 22(1):112-123.
    [9] XU W J, HU L M, GAO W. Random generation of the meso-structure of a soil-rock mixture and its application in the study of the mechanical behavior in a landslide dam[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 86:166-178.
    [10] 舒志乐,刘新荣,刘保县,等.土石混合体粒度分形特性及其与含石量和强度的关系[J].中南大学学报(自然科学版), 2010, 41(3):1096-1101.
    [11] WANG T L, YUE Z R, MA C, et al. An experimental study on the frost heave properties of coarse grained soils[J]. Transportation Geotechnics, 2014, 1(3):137-144.
    [12] 冯上鑫,柴军瑞,许增光,等.基于核磁共振技术研究渗流作用下土石混体细观结构的变化[J].岩土力学, 2018, 39(8):2886-2894.
    [13] ZHOU Z, YANG H, XING K, et al. Prediction models of the shear modulus of normal or frozen soil-rock mixtures[J]. Geomechanics and Engineering, 2018, 15(2):783-791.
    [14] BAGHERZADEH-KHALKHALI A, MIRGHASEMI A A. Numerical and experimental direct shear tests for coarse-grained soils[J]. Particuology, 2009, 7(1):83-91.
    [15] 何鹏飞,马巍,穆彦虎,等.冻融循环对冻土-混凝土界面冻结强度影响的试验研究[J].岩土工程学报, 2020, 42(2):299-307.
    [16] 贾学明,柴贺军,郑颖人.土石混合料大型直剪试验的颗粒离散元细观力学模拟研究[J].岩土力学, 2010, 31(9):2695-2703.
    [17] LI S H, ZHAO M H, WANG Y N, et al. A new numerical method for DEM-block and particle model[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41:414-418.
    [18] 金磊,曾亚武,李欢,等.基于不规则颗粒离散元的土石混合体大三轴数值模拟[J].岩土工程学报, 2015, 37(5):829-838.
    [19] XING K, ZHOU Z, YANG H, et al. Macro-meso freeze-thaw damage mechanism of soil-rock mixtures with different rock contents[J]. International Journal of Pavement Engineering, 2018, 21(1):9-19.
    [20] 徐文杰,胡瑞林.虎跳峡龙蟠右岸土石混合体粒度分形特征研究[J].工程地质学报, 2006(4):496-501.
    [21] 刘泉声,黄诗冰,康永水,等.裂隙岩体冻融损伤研究进展与思考[J].岩石力学与工程学报, 2015, 34(3):452-471.
    [22] 刘泉声,黄诗冰,康永水,等.岩体冻融疲劳损伤模型与评价指标研究[J].岩石力学与工程学报, 2015, 34(6):1116-1127.
    [23] KONG Q Z, WANG R L, SONG G B, et al. Monitoring the soil freeze-thaw process using piezoceramic-based smart aggregate[J]. Journal of Cold Regions Engineering, 2014, 28(2):1-16.
    [24] HU T F, LIU J K ZHU B Z, et al. Study on sliding characteristics and controlling measures of colluvial landslides in Qinghai-Tibet Plateau[J]. Procedia Engineering, 2016, 143:1477-1484.
    [25] 唐丽云,王鑫,邱培勇,等.冻土区土石混合体冻融交界面剪切性能研究[J].岩土力学, 2020, 41(10):3225-3235.
    [26] 胡峰,李志清,孙凯,等.冻土石混合体、冰石混合物和冻土在压、拉作用下的破坏特征对比[J].岩石力学与工程学报, 2021, 40(1):2923-2934.
    [27] LU J G, WAN X S, YAN Z R, et al. Hydro-thermal characteristics and deformation behaviors of silty clay subjected to freeze-thaw cycles[J]. Arabian Journal of Geosciences, 2022, 15(5):446-455.
    [28] 中华人民共和国交通运输部.公路土工试验规程:JTG 3430-2020[S].北京:人民交通出版社, 2020.
    [29] LU J G, ZHANG M Y, ZHANG X Y, et al. Experimental study on the freezing-thawing deformation of a silty clay[J]. Cold Regions Science and Technology, 2018, 151:19-27.
    [30] ZHANG Y G, LU Y, LIU S H, et al. Volumetric behavior of an unsaturated clayey soil-rock mixture subjected to freeze-thaw cycles:a new insight[J]. Cold Regions Science and Technology, 2022, 201:103608-103617.
    [31] DAGESSE D F. Freezing cycle effects on water stability of soil aggregates[J]. Canadian Journal of Soil Science, 2013, 93(4):473-483.
    [32] PERFECT E, LOON W K P V, KAY B D, et al. Influence of ice segregation and solutes on soil structural stability[J]. Canadian Journal of Soil Science, 1990, 70(4):571-581.
    [33] COUSSY O. Poromechanics of freezing materials[J]. Journal of the Mechanics and Physics of Solids, 2005, 53(8):1689-1718.
    [34] SUN K, ZHOU A N. A multisurface elastoplastic model for frozen soil[J]. Acta Geotechnica, 2021, 16(11):3401-3424.
    [35] WANG S F, YANG Z H, YANG P. Structural change and volumetric shrinkage of clay due to freeze-thaw by 3D X-ray computed tomography[J]. Cold Regions Science and Technology, 2017, 138:108-116.
    [36] 邱国庆,刘经仁,刘鸿绪.冻土学辞典(汉、英、俄对照)[M].兰州:甘肃科学技术出版社, 1994.
  • 期刊类型引用(1)

    1. 李愫. 河南文化遗址空间的感官阐释与体验研究. 建筑与文化. 2023(07): 217-219 . 百度学术

    其他类型引用(1)

  • 加载中
计量
  • 文章访问数:  54
  • HTML全文浏览量:  11
  • PDF下载量:  2
  • 被引次数: 2
出版历程
  • 收稿日期:  2022-08-27
  • 网络出版日期:  2024-05-29

目录

    /

    返回文章
    返回