Analysis of Type Selection and Wind Load Parameters of Long-Span Prestressed Pipe Truss Structures
-
摘要: 预应力管桁架结构具有良好的力学性能和经济性,可满足储煤场封闭结构的大跨度需求。以170 m跨度榆树湾煤矿储煤场结构的风洞试验为基础,明确了预应力管桁架结构风荷载最不利风向角和不同分区的风载体型系数;设计了5种截面形式的主桁架,分析了风载和地震作用下,各方案的杆件内力/应力与位移、支座反力、索应力等力学性能关系及结构动力特性。结果表明:各方案优化后杆件的内力沿三心圆轴线变化规律基本一致,且量值相差较小;而各方案单根杆件断面的应力相差较大,其中杆件组合形式为矩形和倒梯形截面时应力水平较高;倒三角形和倒梯形与倒三角形组合设计截面的刚度较大,位移响应和预应力拉索内力均较小,而后者的用钢量稍大。综合分析,杆件倒三角形组合设计截面形式受力性能和经济性良好,设计时可优先考虑。Abstract: The prestressed pipe truss structure has good mechanical properties and economy, which can meet the long-span requirements of the closed structure of the coal storage yard. Based on the wind tunnel test of the coal storage yard structure(with a span of 170 m) at Yushuwan Coal Mine, the most unfavorable wind direction angle of the prestressed pipe truss structure and the wind load shape coefficients of different zones were clarified. The mechanical properties and structural dynamic characteristics of each scheme were analyzed under wind load and earthquake conditions, such as internal forces/stresses and displacements of members, support reaction forces, and cable stresses. The results showed that the variations in internal forces along the three-center circular axis of each design scheme were similar, with negligible variations in magnitude. However, the stress varied significantly across individual member cross-sections in each scheme. Notably, members with combined rectangular and inverted trapezoidal cross-sections exhibited higher stress. The cross-sections designed with an inverted triangle or a combination of an inverted trapezoid and an inverted triangle exhibited higher stiffness, resulting in smaller displacement responses and internal forces, while the latter design required slightly more steel material. The comprehensive analysis showed that the section form designed with an inverted triangle exhibited good mechanical properties and economy, making it a preferred choice in design.
-
[1] 古莉.超大跨张弦桁架结构分析设计方法研究[D].上海:上海交通大学,2019. [2] 吴碧野,武岳,戴君武,等.超大跨度干煤棚结构选型研究[J].建筑结构,2021,51(增刊1):562-568. [3] 朱思宇,梁存之,张建林.某大跨度煤棚结构方案选型及计算[J].建筑钢结构进展,2018,20(5):70-75. [4] 薛素铎,康恺,李雄彦.大跨度预应力拱桁架煤棚布索方案研究[J].建筑结构,2019,49(23):21-25,11. [5] 郑怡彤,吴倩云,贾娅娅,等.考虑周边建筑影响的大跨煤棚风荷载体型系数研究[J].工程力学,2021,38(增刊1):72-76. [6] 苏宁,彭士涛,孙瑛,等.大跨度煤棚主体结构设计风荷载的神经网络建模研究及应用[J].建筑结构学报,2019,40(7):34-41. [7] GARCIA P A. Estimacion de danos producidos por viento en edificaciones industriales[D]. PuertoRico:University of Puerto Rico (Mayaguez),2008:44-48. [8] DUTHINH D,FRITZW P. Safety evaluation of low-rise steel structures under wind loads by nonlinear database-assisted tschnique[J]. Journal of Structural Engineering,2007,133(4):587-594. [9] 李少荣,杨小军.大跨度煤场预应力拱形管桁架结构设计要点[J].山西煤炭,2019,39(4):33-37. [10] 李少荣,杨小军.榆神煤炭榆树湾煤矿有限公司地销煤场改建全封闭储煤棚工程储煤场设计可行性论证报告[R].西安:中煤西安设计工程有限责任公司,2021. [11] 蒋斌,倪建公.大跨度三心圆柱面网壳结构设计与研究[J].空间结构,2015,21(3):54-62,34. -
点击查看大图
计量
- 文章访问数: 43
- HTML全文浏览量: 13
- PDF下载量: 1
- 被引次数: 0
登录
注册
E-alert
登录
注册
E-alert
下载: