Research on the Structure System of Bending-Torsion Columns and Spiral Beam Sightseeing Tower
-
摘要: 根据某实际工程的建筑造型和结构特点,提出了一种由3根弯扭柱和1根螺旋梁组成的观光塔塔身结构体系,详细分析了柱子扭转角度θ、螺旋梁旋转方向、结构直径D和螺旋梁圈数n对结构体系的周期、位移(侧向刚度)、构件受力和结构稳定的影响规律。结果表明:柱子扭转角度θ在研究参数范围内增加对结构受力不利,结构直径D和螺旋梁圈数n对结构受力有一定影响,但影响程度要小于柱子扭转角度θ,弯扭柱扭转方向与螺旋梁扭转方向相反时更有利于结构整体稳定;当柱子扭转角度在研究参数范围内(θ=0°~360°)增加时,结构侧向刚度降低,结构直径在研究参数范围内(D=5~8 m)增加时,结构侧向刚度减小;螺旋梁圈数在研究参数范围内(n=7~11)增加时,结构侧向刚度增大;弯扭柱与螺旋梁旋转方向相反时有利于增大结构的侧向刚度。基于螺旋弹簧横向静刚度理论建立了弯扭柱-螺旋梁结构的侧向刚度计算公式,公式计算结果与软件计算结果吻合良好。Abstract: According to the architectural shape and structural characteristics of an actual project, a structural system of sightseeing tower consisting of three twisted columns and one spiral beam was proposed, and the influence laws of column twisting angle θ, spiral beam rotation direction, structural diameter D and number of spiral beam turns n on the period, displacement (lateral stiffness), member force and structural stability of the structural system were analyzed in detail. The analysis results showed that the increase of column twisting angle θ in the range of the studied parameters was unfavorable to the structural force, and the structural diameter D and the number of spiral beam turns n had some influence on the structural force, but the degree of influence of number of spiral beam turns n was smaller than that of column twisting angle θ. The torsion direction of the bending-torsion column was more favorable to the overall stability of the structure when the torsion direction was opposite to that of the spiral beam. The lateral stiffness of the structure decreased when the column twisting angle increased within the studied parameters (θ=0°-360°), and the lateral stiffness of the structure decreased when the structural diameter increased within the studied parameters (D=5-8 m). The lateral stiffness of the structure increased when the number of spiral beam turns increased within the studied parameters (n=7-11). The lateral stiffness of the structure increased when the bent and twisted column was rotated in the opposite direction to the spiral beam. Based on the coil spring transverse static stiffness theory, the lateral stiffness calculation formula of the bending-torsion column and spiral beam structure was established, and the formula calculation results were in good agreement with the software calculation results.
-
[1] 刘美景, 曾少儒, 范圣刚. 复杂高耸观光塔钢结构分析与设计[J]. 钢结构(中英文), 2021, 36(2):56-63. [2] 李强,赵凯,韩娜娜,等. 海口融创观光塔结构设计[J]. 建筑结构, 2021, 51(22):32-36. [3] 何天森,何诚,巢斯. 某高耸钢结构电视塔的结构分析与设计[J]. 建筑结构, 2021, 51(增刊1):1430-1432. [4] 周露. 周口市广播电视发射塔结构设计关键问题分析[J]. 建筑结构, 2017, 47(3):92-96. [5] 佘广军, 孟昭沛, 吴栋. 观光塔式高柔结构的重力二阶效应分析[J]. 建筑结构, 2012(增刊1):430-433. [6] 汤荣广. 南京奥体体育科技中心观光塔主体结构设计[J]. 建筑钢结构进展, 2009, 11(6):56-60. [7] 阳光武, 肖守讷, 张卫华. 螺旋圆弹簧的横向刚度分析[J]. 中国铁道科学, 2010, 31(4):59-62. [8] 张名扬, 张开林, 姚远. 螺旋弹簧横向静刚度计算及动刚度频变分析[J]. 机械制造与自动化, 2021, 50(3):28-32. [9] 郭荣生. 螺旋弹簧的横向弹性特性[J]. 铁道车辆, 1976(4):7-17. [10] 中华人民共和国住房和城乡建设部. 高耸结构设计标准:GB 50135—2019[S]. 北京: 中国建筑工业出版社, 2019.
点击查看大图
计量
- 文章访问数: 16
- HTML全文浏览量: 3
- PDF下载量: 2
- 被引次数: 0