Experimental Research on the Mechanical Response of Insulating Laminated Glass Plates Under Single-Curved Cold Bending
-
摘要: 为研究中空夹层玻璃板在单向冷弯作用下的力学响应,考虑冷弯半径、玻璃板厚度、中空层厚度和聚乙烯醇缩丁醛(PVB)夹层厚度的影响,对设计的12块中空夹层玻璃板进行了圆弧形单向冷弯试验,分析了试件两受拉面的应力分布情况和上下层玻璃板间相对滑移值的变化特点,并对比了不同设计因素对试验结果的影响。研究结果表明:中空夹层玻璃板在单向冷弯作用下产生的最大主拉应力位于外凸面的长边中点处,两个受拉面的最大主拉应力平均相差15.5%;层间相对滑移值随冷弯加载位移的增加呈近线性增大趋势;主拉应力和层间相对滑移值受冷弯半径的影响最大,冷弯半径减小40%,试件的最大主拉应力平均增大101.5%,层间相对滑移值平均增大54.0%;玻璃板厚度或中空层厚度的增大会使冷弯主拉应力和层间相对滑移值增大;PVB夹层厚度对试验结果影响最小。Abstract: In order to study the mechanical response of insulating laminated glass plates under single-curved cold bending, considering the effects of cold bending radius, glass plate thickness, insulating layer thickness and PVB interlayer thickness, circular arc single-curved cold bending tests were carried out on 12 designed insulating laminated glass plates. The stress distribution of the two tensile surfaces of the specimen and the variation characteristics of the relative slip values between the upper and the bottom glass plates were analyzed, and the effects of different designed factors on the test results were compared. The results showed that the maximum principal tensile stress of single-curved cold-bent insulating laminated glass plates was found at the midpoint of the long side of the outer convex surface, and the average difference of the maximum principal tensile stress between the two tensile surfaces was 15.5%; the interlaminar relative slip value increased nearly linearly with the increase of cold bending displacement; the principal tensile stress and interlaminar relative slip values were most affected by the cold bending radius. The maximum principal tensile stress increased by 101.5% and the interlaminar relative slip value increased by 54.0% as the cold bending radius decreased by 40%; with the increase of glass plate thickness or insulating layer thickness, the cold bending principal tensile stress and the interlaminar relative slip value would increase; the thickness of PVB interlayer had the least influence on the test results.
-
[1] GAVRIIL K, GUSEINOV R, PÉREZ J, et al. Computational design of cold bent glass façades[J]. ACM Transactions on Graphics (TOG), 2020, 39(6): 1-16. [2] NEUGEBAUER J. Applications for curved glass in buildings[J]. Journal of Facade Design and Engineering, 2014, 2(1/2): 67-83. [3] VÁKÁR L I, GAAL M. Cold bendable, laminated glass-new possibilities in design[J]. Structural Engineering International, 2004, 14(2): 95-97. [4] EEKHOUT M, NIDEREHE S. The new, cold bent glass roof of the Victoria & Albert Museum, London[C]//Challenging Glass Conference Proceedings.2009.Doi: 10.7480/CGC.2.2312. [5] 孙坚, 金志强. 框支式冷弯玻璃可靠性研究与施工工艺[J]. 施工技术, 2019, 48(23):129-133. [6] 唐际宇, 黄业信, 王维, 等. 南宁吴圩国际机场新航站楼双曲面玻璃幕墙施工技术[J]. 施工技术, 2016, 45(20):5-8. [7] GALUPPI L, MASSIMIANI S, ROYER-CARFAGNI G. Buckling phenomena in double curved cold-bent glass[J]. International Journal of Non-Linear Mechanics, 2014, 64: 70-84. [8] GALUPPI L, ROYER-CARFAGNI G. Rheology of cold-lamination-bending for curved glazing[J]. Engineering Structures, 2014, 61: 140-152. [9] GALUPPI L, ROYER-CARFAGNI G. Localized contacts, stress concentrations and transient states in bent-lamination with viscoelastic adhesion. an analytical study[J]. International Journal of Mechanical Sciences, 2015, 103:275-287. [10] GALUPPI L, ROYER-CARFAGNI G. Optimal cold bending of laminated glass[J]. International Journal of Solids and Structures, 2015, 67: 231-243. [11] DATSIOU K G, OVEREND M. The mechanical response of cold bent monolithic glass plates during the bending process[J]. Engineering Structures, 2016, 117: 575-590. [12] QUAGLINI V, CATTANEO S, PETTORRUSO C, et al. Cold bending of vertical glass plates: wind loads and geometrical instabilities[J/OL]. Engineering Structures, 2020, 220. https://doi.org/10.1016/j.engstruct.2020.110983. [13] BELIS J, INGHELBRECHT B, VAN IMPE R, et al. Cold bending of laminated glass panels[J]. Heron, 2007, 52(1/2): 123-146. [14] 张喜德, 蒙芷萩, 熊伟君, 等. 双曲冷弯钢化玻璃板的负向耦合承载性能试验研究[J]. 工业建筑, 2020, 50(12):93-97. [15] ZHANG X D, LIANG J Z, HUANG D. Study on the mechanical response of anticlastic cold bending insulating glass and its coupling effect with uniform load[J]. PLOS ONE, 2021, 16(4), e0250463. [16] ZHANG X D, YIN X Q. Experimental study on cold bending and temperature change of toughened glass[C]//IOP Conference Series: Earth and Environmental Science. Nanchang:2021. [17] 石永久, 马赢, 王元清. 点支式中空夹层玻璃的抗弯设计方法[J]. 建筑材料学报, 2009, 12(6):756-760.
点击查看大图
计量
- 文章访问数: 33
- HTML全文浏览量: 4
- PDF下载量: 2
- 被引次数: 0