Research on the Design Method of Compressive Bearing Capacity of Y-Type Cast Steel Joints
-
摘要: 推导出了Y型铸钢节点在轴心受压和小偏心受压作用下的抗压设计承载力公式,并采用试验结果对提出的抗压设计承载力公式进行了验证。节点的抗压设计承载力公式推导过程分为以下三个步骤: 1)推导节点简化模型的极限承载力公式。对原节点进行简化,参考空心球的力学模型和承载力公式的形式,对有限元分析结果进行线性回归,得到轴心压力、弯矩及偏心压力作用下简化模型的极限承载力公式; 2)推导节点数值模型的设计承载力公式。根据节点数值模型几何参数的重要性分析结果和有限元分析结果,在简化模型的基础上,推导出轴心受压和小偏心受压的数值模型的抗压极限承载力公式,并根据CECS 235︰ 2008《铸钢节点应用技术规程》简称《规程》规定进行折减后,得到抗压设计承载力公式; 3)验证小偏心受压节点的抗压设计承载力公式。根据节点的足尺试验结果对小偏心受压节点的抗压设计承载力公式进行验证,并与《规程》中的设计承载力公式对比。
-
关键词:
- Y型铸钢节点 /
- 小偏心受压 /
- LASSO正则化方法 /
- 蒙特卡罗模拟 /
- 设计承载力公式
Abstract: The compressive design bearing capacity formula (CDBCF) for Y-type cast steel joints under axial and small eccentric compression was derived, in addition, the CDBCF was verified by the experimental data of the full-scale experiment. The derivation process could be summarized as the following three steps: 1) the ultimate bearing capacity formula (UBCF) of the simplified model of the joint was derived. The original joint was simplified to a mechanical model whose format of the bearing capacity formula could refer to that of the welded hollow spherical joint. Adopting the format of bearing capacity formula, a regression analysis was conducted based on the results of finite element analysis, to derive the UBCF of the simplified model that was under axial compression, bending moment and eccentric compression; 2) the CDBCF of the numerical model of the joint was derived. According to the results of the importance analysis of the geometric parameters and the results of finite element analysis, and based on the UBCF of the simplified model, the CDBCF of the numerical model was derived for the numerical model that was under axial and small eccentric compression. By modifying the CDBCF of the numerical model in accordance with the requirements in Technical Specification for Application of Connections of Structural Steel Casting(CECS 235:2008), the final CDBCF for the Y-type cast steel joint was obtained; 3) the CDBCF of the joint was verified. The full-scale experimental results of the joint were adopted to verify the CDBCF, and a comparison of the derived formula and the formula in CECS 235:2008 was conducted. -
[1] 刘宜丰,谢明典,向先云,等.成都市规划展览馆辅楼多重复杂钢结构设计[J].建筑结构, 2014, 44(15):24-28. [2] 李俊,卫星,李小珍,等.大型钢网壳结构铸钢节点复杂受力的试验研究[J].土木工程学报, 2005, 39(6):8-12, 19-53. [3] 杜新喜,杨浩,袁焕鑫,等.新疆国际会展中心屋面张弦桁架铸钢节点承载性能试验[J].武汉大学学报(工学版), 2017, 50(6):801-806. [4] 王帆,吴波,黄仕香,等.深圳大运中心体育馆铸钢节点构造选型和模型试验研究[J].建筑结构学报, 2010, 31(4):44-53. [5] 丁阳,张向荣,王志远,等.天津奥林匹克中心体育场铸钢节点试验研究[J].建筑结构学报, 2008(5):8-12. [6] 陈志华,姜玉挺,闫星宇,等.天津图书馆铸钢节点力学性能[J].天津大学学报(自然科学与工程技术版), 2016, 49(增刊1):1-9. [7] 杨渊,陈志华,马克俭,等.全铸钢结构塔铸钢件设计承载力试验研究[J].土木工程学报, 2015, 48(9):31-40. [8] 中国工程建设标准化协会.铸钢节点应用技术规程:CECS 235︰ 2008[S].北京:中国计划出版社, 2008. [9] 董石麟,唐海军,赵阳,等.轴力和弯矩共同作用下焊接空心球节点承载力研究与实用计算方法[J].土木工程学报, 2005, 38(1):21-30. [10] 董石麟,邢丽,赵阳,等.矩形钢管焊接空心球节点承载能力的简化理论解与实用计算方法研究[J].土木工程学报, 2006, 39(6):12-18. [11] 张毅,李正良.空间足尺组合式连接节点受力性能研究[J].土木工程学报, 2017, 50(6):33-41. [12] 刘铭劼,李心霞,韩庆华,等.圆钢管柱-H形钢梁铸钢连接节点传力机理与承载力理论研究[J].建筑结构学报, 2019, 40(3):200-209. [13] 王梦磊,周安,史纲,等.南昌西站Y型铸钢节点静力性能试验研究[J].合肥工业大学学报(自然科学版), 2014, 37(1):95-99. [14] 韩庆华,潘延东,刘锡良.焊接空心球节点的拉压极限承载力分析[J].土木工程学报, 2003, 36(10):1-6. [15] 韩庆华,王开强,刘锡良,等.铸钢空心球管节点受压极限承载力数值分析[J].哈尔滨工业大学学报, 2006(8):1270-1272, 1277. [16] TADIST K, NAJAH S, NIKOLOV N S, et al. Feature selection methods and genomic big data:a systematic review[J]. Journal of Big Data, 2019, 6(1):1-4. [17] 张沥今,魏夏琰,陆嘉琦,等. Lasso回归:从解释到预测[J].心理科学进展, 2020, 28(10):1777-1791.
点击查看大图
计量
- 文章访问数: 53
- HTML全文浏览量: 3
- PDF下载量: 5
- 被引次数: 0