Seismic Performance Analysis of High-Strength Steel Frames with Y-Shaped Eccentrically Braces
-
摘要: Y形偏心支撑高强钢框架结构中耗能梁段竖向布置,与框架梁是独立的两个构件,截面设计更加灵活,且塑性变形对框架梁和楼板影响较小,易于震后修复。结构设计中耗能梁段设计为屈服点低于345 MPa的普通钢材,以保证整体结构具有较好的延性与耗能;框架梁、柱等非耗能构件设计为高强度钢材,如Q460或Q690,在保证非耗能构件的弹性受力状态基础上降低构件截面尺寸。耗能梁段长度和结构层数(结构高度)是影响该结构性能的主要因素,考虑两种因素的影响,通过性能化设计方法设计了8,12,16层三组Y形偏心支撑高强钢框架原型结构,每组耗能梁段长度包括700,900,1 100 mm,共计9个模型。通过Pushover分析和动力弹塑性分析,研究了耗能梁段长度和结构层数对结构的破坏模式、刚度、层间侧移角分布、耗能梁段转角变形等影响。研究结果表明:耗能梁段越长,结构的抗侧刚度越弱;所有结构的层间侧移角和耗能梁段转角变形具有类似的分布模式。Abstract: In the high-strength steel frame with Y-shaped eccentrically braces, the energy-consuming beam, which called links, are arranged vertically, and the frame beams are two independent members, so the cross-sectional design is more flexible, and the plastic deformation has less impact on the frame beams and floor slabs, which is easy to repair after the earthquake. The energy-consuming beam sections were designed as ordinary steel with a yield point below 345 MPa to ensure good ductility and energy consumption of the overall structure, while the non-energy-consuming members such as frame beams and columns were designed as high-strength steels, such as Q460 or Q690, to reduce the cross-sectional size of the members ensuring the elastic stress state of the non-energy-consuming members. The length of the links and the number of storeys (height of the structure) were the main factors affecting the performance of the structure. Three sets of prototype structures of high-strength steel frames with Y-shaped eccentric braces with 8, 12 and 16 storeys were designed by the performance-based design method, with each set of link length varying from 700 mm, 900 mm and 1 100 mm, for a total of nine models. The effects of the length of the links and the number of storeys on the failure mode, stiffness, distribution of storey drift and link rotation were investigated by Pushover analysis and dynamic elastoplastic analysis. The results showed that the longer the links, the weaker the lateral stiffness of the structures; the storey drift and the link rotation showed similar distribution patterns for all structures.
-
Key words:
- link /
- storey number /
- Y-shaped eccentrically braced steel frames /
- high-strength steel /
- storey drift
-
[1] 彭观寿, 高轩能, 陈明华. 支撑布置对钢框架结构抗侧刚度的影响[J]. 工业建筑, 2008, 38(5):83-87. [2] 于海丰, 方斌. 钢框架-中心支撑双重体系抗弯框架设计方法研究[J]. 土木工程学报, 2013(增刊2):117-123. [3] MALLEY J O. POPOV E P. Shear link in eccentrically braced frames[J]. Journal of Structural Engineering, 1984, 110(9): 2275-2295. [4] HJELMSTAD K D, POPOV E P. Characteristics of eccentrically braced frames[J]. Journal of Structural Engineering, 1984, 110(2): 340-353. [5] 蔡益燕, 钱稼茹, 郁银泉. 偏心支撑框架设计新进展[J]. 建筑结构, 2011, 41(4):7-10. [6] 中华人民共和国住房和城乡建设部.建筑抗震设计标准:GB/T 50011—2010[S]. 北京: 中国建筑工业出版社, 2024. [7] 施刚, 班慧勇, 石永久, 等. 高强度钢材钢结构的工程应用及研究进展[J]. 工业建筑, 2012, 42(1):1-7. [8] 李慎, 苏明周, 连鸣. 基于性能设计的高强钢组合K形偏心支撑钢框架抗震性能研究[J]. 建筑结构, 2015, 45(6): 71-79. [9] 李慎, 田建勃, 马辉, 等. 基于性能设计的高强钢组合Y形偏心支撑钢框架抗震性能研究[J]. 工业建筑, 2018, 48(3): 140-150. [10] 王峥, 李慎. 不同支撑形式高强钢组合偏心支撑抗震性能研究[J].世界地震工程, 2020, 36(3):80-92. [11] 田小红, 苏明周, 杨水成, 等. 高强钢组合K形偏心支撑框架抗震性能对比分析[J].建筑结构学报, 2020, 41(10): 42-49. [12] 田小红, 苏明周, 宋丹, 等. 高强钢组合K形偏心支撑框架抗震性能对比研究[J].振动与冲击, 2021, 40(14):69-76. [13] 田小红, 苏明周, 李慎, 等.高强钢组合K形偏心支撑框架抗震性能影响参数分析(Ⅰ)[J].广西大学学报(自然科学版), 2019, 44(6): 1542-1551. [14] 田小红, 苏明周, 李慎, 等. 高强钢组合K形偏心支撑框架抗震性能影响参数分析(Ⅱ)[J]. 广西大学学报(自然科学版), 2020, 45(1): 129-137. [15] 洪敏, 秦瑞, 王凤, 等.高层高强钢组合偏心支撑框架抗震性能简化分析[J].地震工程学报, 2020, 42(2):332-336. [16] 郑晓伟, 苏明周, 石鲁, 等.直接基于位移设计的高强钢组合K形偏心支撑钢框架的抗震性能研究[J].地震工程学报, 2016, 38(5):678-684. [17] 郭艳, 苏明周, 胡长明.高强钢组合偏心支撑框架抗震性能研究[J].地震工程学报, 2016, 38(2):176-184. [18] 李慎, 苏明周. 基于性能的偏心支撑钢框架抗震设计方法研究[J]. 工程力学, 2014, 31(10): 195-204. [19] Federal Emergency Management Agency. Quantification of building seismic performance factors:FEMA695[R]. California, USA: Federal Emergency Management Agency, 2009: A22-A25.
点击查看大图
计量
- 文章访问数: 24
- HTML全文浏览量: 2
- PDF下载量: 1
- 被引次数: 0