Research on Wind Pressure Distribution Characteristics of Y-Shaped Canopies with Platform Columns in Coastal Areas
-
摘要: 站台柱雨棚是一种大跨度的空间结构,对风荷载的作用非常敏感,由于高铁站的功能比较特殊,沿海地区站台柱Y型雨棚与风荷载之间的相互作用研究也相对较少。为了研究沿海地区站台柱Y型雨棚表面的风压分布特征以及风载体型系数,通过计算流体动力学(Computational Fluid Dynamics,CFD)方法建立起雨棚的数值模拟模型进行分析。结果表明:运用CFD方法建立的数值模拟模型与已有文献中风洞实验结果吻合,可信度较高;在0°~90°方向角的作用下,雨棚上表面风压会随风向角的增大而增大,下表面风压变化范围不大,同时确定了最不利风向角为0°,在此风向角下雨棚会产生扭转破坏的趋势,影响雨棚的稳定性;在0°最不利风向角的条件下求得沿海地区Y型雨棚表面的风载体型系数,相邻雨棚对所研究的雨棚的风荷载几乎无影响。Abstract: The canopy with platform columns is a long-span space structure, which is very sensitive to the effect of wind load. At the same time, due to the special function of high-speed railway station, there are relatively few studies on the interaction between the Y-shaped canopy with platform columns and wind load in coastal areas. In order to study the wind pressure distribution characteristics and shape factors of wind load on the surface of the Y-shaped canopy with platform columns in coastal areas, a numerical simulation model of the canopy was established by the Computational Fluid Dynamics (CFD) method for analysis. The results showed that the numerical simulation model established by CFD method was consistent with the experimental results of wind tunnel in the literature and had high credibility; under the action of 0° to 90° directional angle, the wind pressure on the upper surface of the canopy would increased with the increase of wind direction angle, and the wind pressure on the lower surface would not change much, meanwhile, the most unfavorable wind direction angle was determined to be 0°, in which the canopy would produce the tendency of torsional damage and affect the stability of the canopy. The shape factors of wind load of the surface of Y-shaped canopies in coastal areas were obtained in the condition of the most unfavorable wind angle of 0°, the adjacent canopy had little effect on the wind load of the studied canopy.
-
[1] 黄本才,汪从军. 结构抗风分析原理及应用[M]. 上海:同济大学出版社,2008. [2] 王笑红. 中小型铁路车站雨棚风荷载、风效应和等效静风荷载研究[D]. 北京:北京交通大学,2020. [3] 张明亮. 考虑幕墙开孔的屋盖结构风洞试验及理论分析研究[D]. 长沙:湖南大学,2013. [4] 孙晓颖,武岳,沈世钊. 鞍形屋盖平均风压分布特性的数值模拟研究[J]. 工程力学,2006(10):7- 14. [5] 刘岩,钱宏亮,范峰. 大型射电望远镜结构风荷载特性研究[J]. 红外与激光工程,2015,44(1):148- 156. [6] 王宪统. 多折面体型空间结构风荷载数值模拟研究[D]. 兰州:兰州理工大学,2014. [7] KIM R W,LEE I B,YEO U H,et al. Estimating the wind pressure coefficient for singlespan greenhouses using an large eddy simulation turbulence model[J]. Science Direct,2019,88(2):114- 135. [8] 徐辉华,王瑞琦,孙凌云. 某火车站站台雨棚风荷载及抗风可靠性设计分析[J]. 地产,2019(9):93- 95. [9] 张天舒. 风荷载体型系数确定的数值风洞方法研究[D]. 天津:天津大学,2007. [10] 中华人民共和国住房和城乡建设部. 建筑结构荷载规范:GB 50009—2012[S]. 北京:中国建筑工业出版社,2012. [11] 谭杰元,李寿科,肖飞鹏. 高铁站台雨棚表面风荷载及干扰效应研究[J]. 建筑结构,2020,50(16):119- 124,33. [12] 吴昆,王少杰,张广鹏,等. 拱形塑料大棚风致干扰效应及风压特性研究[J]. 农业工程学报,2019,35(15):165- 174. [13] SUN Y,LI Z,SUN X,et al. Interference effects between two tall chimneys on wind loads and dynamic responses[J]. Journal of Wind Engineering and Industrial Aerodynamics,2020,206,104227. [14] HUA J Y,ZUO D L. Evaluation of aerodynamic damping in full-scale rain-wind-induced stay cable vibration[J]. Journal of Wind Engineering& Industrial Aerodynamics,2019,191:215- 226. [15] 陈弈潜,袁伟斌,徐星浩. 大跨度雨棚风荷载体型系数数值模拟分析[J]. 浙江建筑,2022,39(1):34- 38. -
点击查看大图
计量
- 文章访问数: 58
- HTML全文浏览量: 16
- PDF下载量: 2
- 被引次数: 0
登录
注册
E-alert
登录
注册
E-alert
下载: