Experimental Research on Seismic Performance of Reinforced Tenon Precast Low-Rise Shear Walls
-
摘要: 装配式剪力墙拼缝部位发生水平相对滑移,对装配式剪力墙的抗震性能产生不利影响,为改善装配式剪力墙拼缝的力学性能,提出一种大尺寸配筋齿槽抵抗拼缝剪切力,纵向连接钢筋承受拉压应力并屈服耗能的新型配筋齿槽装配式剪力墙。为研究配筋齿槽装配式低矮剪力墙的抗震性能,对2片高宽比分别为1.76和1.5的配筋齿槽装配式剪力墙进行拟静力加载试验,观察试件的裂缝发展规律和破坏形态,分析其滞回曲线、骨架曲线、承载力、刚度退化、延性、耗能能力、钢筋应变及拼缝连接性能。结果表明:两片试件的破坏形态均为墙体底部拼缝处的压弯破坏,但拼缝界面并未发生较大剪切滑移,表现出较好的抗剪承载能力。墙体的初始刚度、耗能能力和延性等力学性能指标达到“等同现浇”水准。同时,具有较低高宽比的试件表现出更好的抗震性能。Abstract: The horizontal relative slip of the precast shear wall joints has a negative impact on the seismic performance of the precast shear wall.In order to improve the mechanical properties of the precast shear wall joints, a new type of precast shear wall with large-size reinforced tenon to resist the shear force of the joints and the longitudinal connecting steel bars to bear tensile and compressive stress and yield energy dissipation was proposed.In order to investigate the seismic performance of reinforced tenon precast low-rise shear walls, two reinforced tenon precast low-rise shear walls with aspect ratio of 1.76 and 1.5 were tested under quasi-static loading.The crack development law and failure mode of the specimens were observed, and the hysteresis curve, skeleton curve, bearing capacity, stiffness degradation, ductility, energy dissipation capacity, steel bar strain and joint connection performance were analyzed.The results showed that the failure modes of the two specimens were compressive bending failure at the bottom joint of the wall, but there was no large shear slip at the joint interface, which showed a good shear bearing capacity.The mechanical properties such as initial stiffness, energy dissipation capacity and ductility of the wall could reach the level of ‘equivalent cast-in-situ’.At the same time, the specimens with lower aspect ratio showed better seismic performance.
-
Key words:
- reinforced tenon /
- precast low-rise shear wall /
- aspect ratio /
- seismic performance /
- quasi-static test
-
[1] GU Q, DONG G, WANG X, et al. Research on pseudo-static cyclic tests of precast concrete shear walls with vertical rebar lapping in grout-filled constrained hole[J]. Engineering Structures,2019, 189:396-410. [2] GUO T, ZHANG G, CHEN C. Experimental study on self-centering concrete wall with distributed friction devices[J]. Earthquake Engineering, 2014, 18(2):214-230. [3] PEREZ F J, PESSIKI S, SAUSE R. Experimental lateral load response of unbonded post-tensioned precast concrete walls[J]. ACI Structural,2013, 110(6):1045-1055. [4] WU D, LIANG S, SHEN M, et al. Experimental estimation of seismic properties of new precast shear wall spatial structure model[J]. Engineering Structures,2019, 183:319-339. [5] WU M, LIU X, LIU H, et al. Seismic performance of precast short-leg shear wall using a grouting sleeve connection[J]. Engineering Structures,2020, 208.DOI: 10.1016/j.engstruct.2020.110338. [6] SOUDKI K A, RIZKALLA S H, LEBLANC B J P J. Horizontal connections for precast concrete shear walls subjected to cyclic deformations part 1:mild steel connections[J]. PCI Journal,1995, 40(4):78-96. [7] 吴东岳,梁书亭,郭正兴,等. 改进型钢筋浆锚装配式剪力墙压弯承载力计算[J]. 哈尔滨工业大学学报,2015,47(12):112-116. [8] 薛伟辰,胡翔. 预制混凝土剪力墙结构体系研究进展[J]. 建筑结构学报,2019,40(2):44-55. [9] 余志武,彭晓丹,国巍,等. 装配式剪力墙U型套箍连接节点抗震性能[J]. 浙江大学学报(工学版),2015,49(5):975-984. [10] 吴东岳,沈梦滢,孙崇芳,等. 浆锚连接装配式剪力墙拼缝水平相对滑移影响规律[J]. 施工技术,2019,48(3):36-40. [11] 张锡治,马健,韩鹏,等. 装配式剪力墙齿槽式连接受剪性能研究[J]. 建筑结构学报,2017,38(11):93-100,121. [12] 张锡治,田杰松,蔡魏巍,等. 暗柱配筋率对齿槽式连接装配式剪力墙压弯性能的影响[J]. 建筑结构,2016,46(10):24-31. [13] 张锡治,韩鹏,李义龙,等. 带现浇暗柱齿槽式预制钢筋混凝土剪力墙抗震性能试验[J]. 建筑结构学报,2014,35(8):88-94. [14] 孙崇芳,梁书亭,朱筱俊. 装配式剪力墙槽口-无粘结水平接缝的抗剪承载力研究[J]. 特种结构,2016,33(4):19-24. [15] SUN C, LIANG S, ZHU X, et al. Ductility calculation of prefabricated shear wall with rabbet-unbond horizontal connection[J]. Advances in Civil Engineering, 2018,2018:1-12. [16] SU H, CHEN W, WU D Y, et al. Experimental study on seismic performance of new reinforced tenon joint precast shear walls[J]. Advances in Structural Engineering, 2021, 24(8):1631-1641. [17] WU D Y, SU H, WANG S L, et al. Experimental test for mechanical properties of new tenon composite wall using thermal self-insulation block[J]. Advances in Structural Engineering, 2020, 24(1):79-89. [18] 王石林. 配筋齿槽装配式剪力墙抗震性能与水平接缝力学性能研究[D].镇江:江苏科技大学,2020. [19] MANSOUR M Y, DICLELI M, LEE J Y. Nonlinear analysis of R/C low-rise shear walls[J]. Advances in Structural Engineering, 2009, 7(4):345-361. [20] 李兵,李宏男. 钢筋混凝土低剪力墙拟静力试验及滞回模型[J]. 沈阳建筑大学学报(自然科学版),2010,26(5):869-874. [21] 刘建,陈晓磊. 保证变形能力的钢筋混凝土低矮剪力墙抗剪承载力计算[J]. 特种结构,2020,37(6):1-8. [22] 张松,吕西林,章红梅. 钢筋混凝土剪力墙构件极限位移的计算方法及试验研究[J]. 土木工程学报,2009,42(4):10-16. [23] 中华人民共和国住房和城乡建设部. 建筑抗震设计规范:GB 50011-2010[S].北京:中国建筑工业出版社,2010. [24] 中华人民共和国建设部.JGJ 101-1996[S].北京:中国建筑工业出版社,1997.
点击查看大图
计量
- 文章访问数: 255
- HTML全文浏览量: 28
- PDF下载量: 10
- 被引次数: 0