Seismic Dynamic Analysis of Free Fields and Comparisons of Influence Factors in Underground Engineering
-
摘要: 地下结构地震反应分析需要考虑结构-地基的动力相互作用,其中场地土层的自由场反应分析是确定地震输入的关键。通过对竖向纵波与水平向横波联合作用下土层自由场反应的研究,发现与仅考虑水平向横波相比,联合考虑水平与竖向输入波时地表土体的短周期谐波含量更丰富,地表水平向响应增大。因此,对于抗震安全等级要求较高的复杂地下结构,其地震输入应考虑竖向纵波的影响。此外,分析了水位变化及加载强度对土层动力反应的影响。分析显示:随输入地震波强度的增大,土层的应力状态改变,地表放大系数沿竖向逐渐增大,而在水平向逐步降低;由于水位变化,地表振动的频率响应曲线发生了改变,水位下降引起地表水平向振动减小,而竖向地震响应增大。
-
关键词:
- 结构-地基动力相互作用 /
- 自由场反应分析 /
- 频域分析模型 /
- 竖向纵波
Abstract: Seismic response analysis on underground engineering must consider the dynamic interaction between structures and foundation, in which the free field response analysis of soil strata is an essential issue to determine the seismic input. Studying free field responses of soil strata subjected to vertical compression waves combined with horizontal shear waves, it was found that compared with under the action of horizontal shear wave only, the composition of short period harmonic waves in the upper soil stratum was more abundant under the action of the horizontal shear wave combined with vertical compression wave, and the corresponding horizontal response of the earth’s surface in free fields increased. Therefore, it was necessary to consider the influence of the vertical compression wave on field responses to ensure the safety of underground engineering with high seismic safety level requirements. Moreover, the effects of groundwater level variation and loading intensity on dynamic responses of soil strata were also analyzed. The analysis showed that with the increase of earthquake strength, the stress state of soil strata changed, the amplification factor in the earth surface gradually increased along the vertical direction and decreased along the horizontal direction. As the fluctuation of groundwater level, the frequency response curve of the surface changed steadily, the drop of groundwater level induced the decrease of horizontal vibration and the increase of vertical vibration in the earth surface. -
[1] 中华人民共和国住房和城乡建设部. 地下结构抗震设计标准:GB/T 51336-2018[S].北京:中国建筑工业出版社, 2018. [2] IWAN W D. On a class of models for the yield behavior of continuous and composite system[J]. Journal of Applied Mechanies, 1967, 34(EM3):612-617. [3] YANG J, SATO T. Interpretation of seismic vertical amplification observed at an array site[J]. Bulletin of the Seismological Society of America, 2000, 90(2):275-285. [4] MARTIN P P, SEED H B. One dimensional dynamic ground response analysis[J].Journal of Geotechnical Engineering, ASCE, 1982, 108(7):935-954. [5] 瓦尔夫J P. 土-结构动力相互作用[M]. 北京:地震出版社, 1989:18-22. [6] YANG J, YAN X R. Site response to multi-directional earthquake loading:a practical procedure[J]. Soil Dynamics and Earthquake Engineering, 2009, 29:710-721. [7] YANG J, YAN X R. Factors affecting site response to multi-directional earthquake loading[J]. Engineering Geology, 2009, 107:77-87. [8] 潘旦光, 楼梦麟.层状土层随机地震反应分析的近似解法[J].工程力学, 2008, 25(3):91-95. [9] CHEN Q S, GAO G Y, YANG J. Dynamic response of deep soft soil deposits under multidirectional earthquake loading[J]. Engineering Geology, 2011, 121:55-65. [10] 陈国兴, 庄海洋.基于Davidenkov骨架曲线的土体动力本构关系及其参数研究[J].岩土工程学报, 2005, 27(8):860-864.
点击查看大图
计量
- 文章访问数: 114
- HTML全文浏览量: 18
- PDF下载量: 4
- 被引次数: 0