MESO-SCALE SIMULATIONS OF PULL-OUT TESTS FOR RETARDED BONDED TENDONS
-
摘要: 在结构体系的受力性能上,缓黏结预应力体系相比于有黏和无黏预应力体系的区别主要源自于筋材与混凝土之间黏结作用关系的差异。受限于观测手段,拉拔试验中主要通过黏结-滑移关系曲线判断黏结作用情况。相较于试验方法,数值模拟方法可以量化观测和提取在黏结作用过程中材料产生的损伤和断裂情况。采用修正的内聚力模型(CZM)在细观尺度上模拟了缓黏结预应力筋与混凝土的黏结作用过程,在宏观力学行为和破坏形态上得到了较好的模拟结果。通过所提取的损伤和裂缝开展数据,探讨因为材料的断裂和裂缝扩展演化所导致的非线性黏结作用行为。Abstract: From the standpoint of the structures' mechanical properties, the biggest difference between the retarded-bonded prestressed system and the bonded/unbonded prestressed system stems from the difference in the bond relationship between tendons and concrete. Limited by the observation methods, the bond-slip relationship curves are mainly used to judge the bond behavior in pull-out tests. Compared with the test method, the numerical simulation method can quantitatively observe and extract the damage and fracture of the material during the bonding process. In this paper, the modified CZM model was used to simulate the bonding process between the retard-bonded prestressed tendons and concrete at meso-scale. The macro mechanical response and failure modes of simulation results could achieve good agreements with those of experimental results. Based on the extracted damage and crack propagation data during the bonding process, the nonlinear bonding behavior caused by the damage evolution and crack propagation was discussed.
-
Key words:
- retarded-bonded prestressing /
- meso-scale simulation /
- bond action /
- crack propagation
-
[1] 中华人民共和国住房和城乡建设部.预应力混凝土结构设计规范:JGJ 369-2016[S].北京:中国建筑工业出版社, 2016. [2] WOODWARD R J, WILLIAMS F W.Collapse of Yns-y-Gwas Bridge, Glamorgan[J].Proceedings of the Institution of Civil Engineers, 1988, 84(4):635-669. [3] SOCIETY C.Durable Bonded Post-Tensioned Concrete Bridges[M].Berkshire:The Concrete Society, 1996. [4] 施颖, 郑建群.从设计层面探讨预应力砼连续箱梁桥裂缝控制[J].重庆交通学院学报, 2005(4):15-20. [5] 熊学玉, 肖启晟, 李晓峰.缓粘结预应力研究综述[J].建筑结构, 2018, 48(8):83-90. [6] CHEN F, LI C Q, BAJI H, et al.Quantification of Steel-Concrete Interface in Reinforced Concrete Using Backscattered Imaging Technique[J].Construction and Building Materials, 2018, 179(10):420-429. [7] SUZUKI T, OGATA H, TAKADA R, et al.Use of Acoustic Emission and X-Ray Computed Tomography for Damage Evaluation of Freeze-Thawed Concrete[J].Construction and Building Materials, 2010, 24(12):2347-2352. [8] JAKUBOVSKIS R, KAKLAUSKAS G.Bond-Stress and Bar-Strain Profiles in RC Tension Members Modelled via Finite Elements[J].Engineering Structures, 2019, 194:138-146. [9] 吴转琴, 尚仁杰, 洪光, 等.缓粘结预应力钢绞线与混凝土粘结性能试验研究[J].建筑结构, 2013(2):68-70. [10] 王占飞, 张子静, 谷亚新, 等.缓粘结预应力混凝土结构钢束粘结强度试验研究[J].公路交通科技(应用技术版), 2015, 11(7):195-197. [11] HILLERBORG A, MODÉER M, PETERSSON P.Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements[J].Cement and Concrete Research, 1976, 6(6):773-781. [12] 梁诗雪, 李杰.基于两相随机介质的混凝土破坏全过程模拟[J].工程力学, 2018, 35(2):116-123. [13] TRAWIÑSKI W, TEJCHMAN J, BOBIÑSKI J.A Three-Dimensional Meso-Scale Modelling of Concrete Fracture, Based on Cohesive Elements and X-Ray μCT Images[J].Engineering Fracture Mechanics, 2018, 189:27-50. [14] YILMAZ O, MOLINARI J F.A Mesoscale Fracture Model for Concrete[J].Cement and Concrete Research, 2017, 97:84-94. [15] 熊学玉, 肖启晟.基于内聚力模型的混凝土细观拉压统一数值模拟方法[J].水利学报, 2019, 50(4):448-462. [16] 中华人民共和国住房和城乡建设部.缓粘结预应力钢绞线:JG/T 369-2012[S].北京:中国标准出版社, 2012. [17] 中华人民共和国住房和城乡建设部.缓粘结预应力钢绞线专用粘合剂:JG/T 370-2012[S].北京:中国标准出版社, 2012. [18] XIONG X Y, XIAO Q S.Meso-Scale Simulation of Bond Behaviour Between Retarded-Bonded Tendons and Concrete[J].Engineering Structures, 2021, 228.DOI: 10.1016/j.engstruct.2020.111410.
点击查看大图
计量
- 文章访问数: 143
- HTML全文浏览量: 30
- PDF下载量: 5
- 被引次数: 0