Research on Seismic Isolation and Seismic Reduction of High-Rise Buildings Bases in High Intensity Area
-
摘要: 对高烈度区的高层建筑采用不同隔震方案的减震效果进行了对比分析,包括单一铅芯橡胶支座隔震、单一天然橡胶支座隔震、铅芯和天然橡胶支座混合隔震,以及上述方案分别与黏滞阻尼器组合的混合减隔震共6个方案。采用黏滞阻尼器和天然橡胶支座混合减隔震方案,并以分析得到的最优阻尼指数和阻尼系数为基础,分析了降低隔震上部结构的自振周期对减震效果的影响。通过对比分析可知,隔震层增设黏滞阻尼器,可以明显提高减震效果,降低水平向减震系数,减少支座拉应力和位移。对上部结构较柔的高层隔震建筑,仅依靠调整橡胶支座和黏滞阻尼器的布置或参数较难实现预期的减震目标,较为有效的方法是提高上部结构的刚度,降低上部结构的自振周期。阻尼器出力增加并不一定能减小水平向减震系数、支座拉应力。阻尼系数和阻尼指数对水平向减震系数和支座拉应力的影响有一个最优值。Abstract: The seismic isolation effect of different isolation schemes for high-rise buildings in high-intensity area were compared and analyzed, including single lead rubber bearing isolation, single natural rubber bearing isolation, lead rubber and natural rubber bearing mixed isolation, and the above schemes were combined with viscous dampers. Based on the optimal damping indexes and damping coefficients obtained from the analysis, the influence of reducing natural vibration period of non-isolated structure on the seismic isolation effect was analyzed by using the mixed damping scheme of viscous damper and natural rubber bearing. The analysis showed that adding viscous damper in the isolation layer could significantly improve the seismic isolation effect, reduce the horizontal damping coefficient, and reduce the tensile stress and displacement of the bearing. For high-rise isolated buildings with flexible superstructures, it might be difficult to achieve the expected damping target only by adjusting the layout or parameters of rubber bearings and viscous dampers. The more effective method should be improving the stiffness of superstructure and reducing the natural vibration period of superstructure. Increasing damper output could not necessarily reduce horizontal damping coefficient and bearing tensile stress. The damping coefficient and damping index had an optimal value for the influence of horizontal damping coefficient and bearing tensile stress.
-
[1] 张雷, 梁伟桥, 王罡, 等.核反应堆厂房基底隔震设计与地震响应分析[J].工业建筑, 2019, 49(7):70-76. [2] 葛根旺, 王军伟, 晋宇.高层隔震结构的应用现状与研究进展[J].工程抗震与加固改造, 2020, 42(6):53-62, 69. [3] 丁洁民, 吴宏磊, 王世玉, 等.减隔震技术的发展与应用[J].建筑结构, 2021, 51(17):25-33. [4] 高杰, 薛彦涛.并联变刚度隔震支座试验研究[J].工业建筑, 2018, 48(6):16-20. [5] 林树潮, 周一君.长周期地震动作用下LNG储罐外罐的动力性能研究[J].特种结构, 2021, 38(2):34-41. [6] 张亚飞, 李利平, 刘德稳, 等.长周期地震动下框架-剪力墙结构隔减震改造[J].湖南科技大学学报(自然科学版), 2021, 36(2):13-20. [7] HEATON T N, HALL J F, WALD D J, et al.Response of high-rise and base-isolated buildings to ahypothetical Mw 7.0 blind thrust earthquake[J].Science, 1995, 267(5195):206-211. [8] 宋晓, 谭平, 周福霖, 等.层间隔震结构参数分析与减震性能研究[J].地震工程与工程振动, 2018, 38(5):41-49. [9] 刘文光, 何文福, 霍达, 等.隔震结构设计加速度反应谱的取值研究[J].振动与冲击, 2010, 29(4):181-187, 239. [10] 汤康生, 吴燕, 盛涛, 等.基于新型支座的地铁上盖高层建筑基础隔振模型试验研究[J].工业建筑, 2021, 51(5):76-81, 163. [11] 杨海旭, 朱峰, 王海飙, 等.多级变频复合摩擦摆-隔震支座的力学性能和隔震效果研究[J].工业建筑, 2020, 50(6):71-78, 110. [12] 苏涛, 梁嘉健, 施谊.组合隔震技术在9度区某高层住宅项目的应用与分析[J].建筑结构, 2021, 51(增刊1):950-954. [13] 李洪求, 薛彦涛, 郗可, 等.某高烈度区高层剪力墙住宅隔震设计[J].建筑结构, 2019, 49(16):1-5. [14] 陈瑞生, 吴进标, 刘彦辉, 等.黏滞阻尼器-基础隔震混合体系优化研究[J].振动与冲击, 2020, 39(11):93-100. [15] 叶昆, 舒率.基于性能需求的基础隔震结构附加调谐惯容阻尼器的优化设计研究[J].动力学与控制学报, 2020, 18(5):57-62. [16] 中华人民共和国住房和城乡建设部.建筑抗震设计规范:GB 50011-2010[S].北京:中国建筑工业出版社, 2016.
点击查看大图
计量
- 文章访问数: 164
- HTML全文浏览量: 19
- PDF下载量: 1
- 被引次数: 0