A THEORETICAL MODEL OF SHEAR STRENGTH FOR FIBER-REINFORCED SANDY SOIL BASED THE MICRO INTERFACE SLIP EFFECT
-
摘要: 纤维加筋土是一种复杂的多相复合材料,其强度由内部多相物质的物性以及不同相物质间的耦合力学响应机制共同决定。为考虑纤维几何特征和力学特性对纤维加筋砂土抗剪强度的影响,根据砂颗粒之间以及砂颗粒与纤维之间相互作用产生的微观界面滑移效应,划分纤维加筋砂土的物质相以构造反映其内部材料特征信息的纤维加筋砂土细观胞元。基于细观胞元内部纤维与砂颗粒集合体两相材料间的微细观变形协调条件,结合可有效描述力学响应界面不连续性的应变梯度理论,导出基于细观物理机制的纤维加筋砂土强度理论模型。采用Michalowski-Cermak的纤维加筋砂土三轴固结不排水剪切试验结果对纤维加筋砂土细观胞元模型进行验证,结果表明该模型能有效地模拟和预测纤维加筋砂土的屈服强度。纤维掺入诱发其邻近砂颗粒集合体产生塑性转动梯度和摩擦界面滑移,是纤维加筋砂土纤维强化效应的细观物理机制。Abstract: Fiber-reinforced sandy soil is a multi-phase and multi-scale geo-material, and its strength is determined by properties of the heterogeneous materials of soil and their coupling interaction mechanical responses. On the basis of the microscopic slip effect between sand grains and between sand grains and fibers,a soil cell-element that could describe the internal material information and fiber characteristics of fiber-reinforced sandy soil was constructed by dividing fiber-reinforced sandy soil into different phases of materials to study the influence of the geometrical and mechanical characteristics of fibers on the shear strength of fiber-reinforced sandy soil. According to the compatible geometry deformation between fibers and soil on the microscale,the notion of strain gradient that could effectively describe the interface discontinuity of mechanical response was introduced,and a theoretical model of fiber-reinforced sandy soil based on mesophysical mechanisms was proposed. Moreover,the results from consolidated-undrained triaxial tests conducted by Michalowski and Cermak were used to validate the proposed model. Meanwhile,the theoretical parameters of the model were quantitatively studied. The results showed the addition of fibers caused plastic rotation gradient and interface slip of sand particles adjacent to fibers which was the mesoscopic physical mechanism for the fiber-strengthened effect of fiber-reinforced soil.
-
[1] YETIMOGLU T, INANIR M, INANIR O E.A Study on Bearing Capacity of Randomly Distributed Fiber-Reinforced Sand Fills Overlying Soft Clay[J].Geotextiles and Geomembranes, 2005, 23(2):174-183. [2] CONSOLI N, CASAGRANDE M, COOP M.Performance of a Fibre-Reinforced Sand at Large Shear Strains[J].Geotechnique, 2007, 57(9):751-756. [3] 梁仕华, 牛九格, 刘思涌, 等.聚丙烯纤维掺量对水泥土强度特性的影响研究[J].建筑科学, 2018(3):90-96. [4] CHEN M, SHEN S L, ARULRAJAHC A, et al.Laboratory Evaluation on the Effectiveness of Polypropylene Fibers on the Strength of Fiber-Reinforced and Cement-Stabilized Shanghai Soft Clay[J].Geotextiles and Geomembranes, 2015, 43(6):515-523. [5] BRIGHENTI R.A Mechanical Model for Fiber Reinforced Composite Materials with Elasto-Plastic Matrix and Interface Debonding[J].Computational Materials Science, 2004, 29(4):475-493. [6] SONG J H, BELYTSCHKO T.Multiscale Aggregating Discontinuities Method for Micro-Macro Failure of Composites[J].Composites Part B:Engineering, 2009, 40(6):417-426. [7] CONSOLI N C, BASSANI M A A, FESTUGATO L.Effect of Fiber-Reinforcement on the Strength of Cemented Soils[J].Geotextiles & Geomembranes, 2010, 28(4):344-351. [8] FESTUGATO L, MENGER, ESTÉFANO, BENEZRA F, et al.Fibre-Reinforced Cemented Soils Compressive and Tensile Strength Assessment as a Function of Filament Length[J].Geotextiles And Geomembranes, 2017, 45(1):77-82. [9] MASHER M H, GRAY D H.Static Response of Sand Reinforced with Fibers[J].Journal of Geotechnical Engineering, ASCE, 1990, 116(11):1661-1677. [10] Ranjan G, Vasan R M, Charan H D.Probabilistic Analysis of Randomly Distributed Fiber-Reinforced Soil[J].Journal of Geotechnical Engineering, ASCE, 1996, 122(6):419-426. [11] MICHALOWSKI R L.Limit Stress for Granular Composites Reinforced with Continuous Filaments[J].Journal of Engineering Mechanics, 1997, 123(8):852-859. [12] MICHALOWSKI R L.Limit Analysis with Anisotropic Fiber-Reinforced Soil[J].Géotechnique, 2008, 58(6):489-501. [13] DIAMBRA A, IBRAIM E, MUIR W D, et al.Fiber Reinforced Sands:Experiments and Modeling[J].Geotexiles and Geomembranes, 2010, 28:238-250. [14] GAO Z W, ZHAO J D.Evaluation on Failure of Fiber-Reinforced Sand[J].Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(1):95-106. [15] 王磊, 朱斌, 李俊超, 等.一种纤维加筋土的两相本构模型[J].岩土工程学报, 2014, 36(7):1326-1333. [16] GAO H, HUANG Y, NIX W D, et al.Mechanism-Based Strain Gradient Plasticity-I.Theory[J].Journal of the Mechanics and Physics of Solids, 1999, 47(6):1239-1263. [17] FENG L, KANG Y, ZHANG G, et al.Mechanism-Based Strain Gradient Drucker-Prager Elastoplasticity for Pressure-Sensitive Materials[J].International Journal of Solids and Structures, 2010, 47(20):2693-2705. [18] 冯德銮, 房营光.土体介质直剪力学特性颗粒尺度效应的理论与试验研究[J].岩石力学与工程学报, 2015, 34(增刊2):4308-4319. [19] FENG D L, FANG Y G.Theoretical and Experimental Study on Multi-Scale Mechanical Properties of Soil[J].Soil Mechanics and Foundation Engineering, 2015, 52(4):189-197. [20] MICHALOWSKI R L., ZHAO A G.Failure of Fiber-Reinforced Granular Soils[J].Journal of Geotechnical Engineering, 1996, 122(3):226-234. [21] MICHALOWSKI R L, CERMÁK, J.Triaxial Compression of Sand Reinforced with Fibers[J].Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(2):125-136. [22] Babu G L S, Vasudevan A K, Haldar S.Numerical Simulation of Fiber-Reinforced Sand Behavior[J].Geotextiles and Geomembranes, 2008, 26(2):181-188. [23] SOCOLAR J E S, SCHAEFFER D G, CLAUDIN P.Directed Force Chain Networks and Stress Response in Static Granular Materials[J].European Physical Journal E:Soft Matter, 7(4):353-370. [24] FANG Y G, LI B.Multiscale Problems and Analysis of Soil Mechanics[J].Mechanics of Materials, 2016, 103:55-67. [25] SADEK S, NAJJAR S S, FREIHA F.Shear Strength of Fiber-Reinforced Sands[J].Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(3):490-499. [26] FENG D L, FANG Y G.Theoretical Analysis and Experimental Research on Multiscale Mechanical Properties of Soil[J].International Journal of Geomechanics.2016, 16(4):1-12. [27] QU S, SIEGMUND T, HUANG Y, et al.A Study of Particle Size Effect and Interface Fracture in Aluminum Alloy Composite via an Extended Conventional Theory of Mechanism-Based Strain-Gradient Plasticity[J].Composites Science and Technology, 2005, 65(7/8):1244-1253. [28] NEEDLEMAN A.A Continuum Model for Void Nucleation by Inclusion Debonding[J].Journal of Applied Mechanics, 1987, 54(3):525-531. [29] TANG C S, SHI B, ZHAO L Z.Interfacial Shear Strength of Fiber Reinforced Soil[J].Geotextiles & Geomembranes, 2010, 28(1):54-62. [30] LAWN B.Fracture of Brittle Solids.[M].2nd Ed.London:Cambridge University Press, 1993. [31] MICHALOWSKI R L, ZHAO A.Failure of Unidirectionally Reinforced Composites with Frictional Matrix[J].Journal of Engineering Mechanics, 1996, 122(11):1086-1092. [32] TAYLOR G I.Plastic Strain in Metal[J].Journal of the Institute of Metals, 1938, 62:307-324. [33] FLECK N A, HUTCHINSON J W.A Phenomenological Theory for Strain Gradient Effects in Plasticity[J].Journal of the Mechanics and Physics of Solids, 1993, 41(12):1825-1857. [34] 冯德銮.土体介质多尺度耦合力学特性的理论与试验研究[D].广州:华南理工大学, 2016. [35] 房营光.土体强度与变形尺度特性的理论与试验分析[J].岩土力学, 2014, 35(1):41-47. [36] 房营光.颗粒介质尺度效应的抗剪试验及物理机理分析[J].物理学报, 2014, 63(3):34501-34502. [37] 房营光.土体力学特性尺度效应的三轴抗剪试验分析[J].水利学报, 2014, 45(6):742-748, 755. [38] MINDLIN R D.Influence of Couple-Stresses on Stress Concentrations[J].Experimental Mechanics, 1963, 3(1):1-7. [39] ODA M, IWASHITA K.Study on Couple Stress and Shear Band Development in Granular Media Based on Numerical Simulation Analyses[J].International Journal of Engineering Science, 2000, 38(15):1713-1740. [40] VOYIADJIS G Z, ALSALEH M I, ALSHIBLI K A.Evolving Internal Length Scales in Plastic Strain Localization for Granular Materials[J].International Journal of Plasticity, 2005, 21(10):2000-2024. [41] ZHANG X, AIFANTIS K.Interpreting the Internal Length Scale in Strain Gradient Plasticity[J].Reviews on Advanced Materials Science, 2015, 41(1):72-83.
点击查看大图
计量
- 文章访问数: 93
- HTML全文浏览量: 15
- PDF下载量: 4
- 被引次数: 0