INFLUENCE ANALYSIS OF UNDERGROUND PIPE GALLERY ON NONLINEAR SEISMIC RESPONSE OF UPPER STRUCTURE AND RESEARCH ON IMPROVEMENT MEASURES
-
摘要: 城市地下管廊在修建后常常对上部的地面既有建筑在地震作用下的响应产生不利影响,在水平地震工况下,上部结构的不利影响相对无地下管廊影响的情况将被放大,甚至可能超出上部结构的正常使用范围。以某实际工程为背景,通过现行GB/T 51336—2018《地下结构抗震设计标准》建议的非线性时程分析方法分析上部建筑在地下管廊施工前后的地震响应,得到了管廊施工前后上部结构的地震响应差异并通过计算结果来分析产生差异的原因。通过模拟管廊周围地层注浆加固和调整管廊结构截面设计方法后的上部结构地震动响应,得出改善既有高层建筑地震动响应为目标的地下管廊施工控制措施。在实际工程完工后,现场提取加固前、后的土样进行了室内动三轴试验,得到的试验结果进一步佐证了注浆加固土体对地基土动力特性的改善效果及对上部结构地震响应的控制作用。Abstract: The urban underground pipe gallery often produces adverse effects on the deformation and uneven settlement of upper ground building after construction. Under the horizontal earthquake action after the construction of the underground pipe gallery, the adverse effects will be magnified, even beyond the normal use scope of the upper structure. Based on a practical project, the seismic response of the building structure before and after the construction of the underground pipe gallery was analyzed by the finite element method based on the nonlinear time history analysis proposed by Standard for Seismic Design of Underground Structures (GB/T 51336-2018). The seismic response difference of the structure before and after the construction of the pipe gallery was obtained, and the reasons for the difference were analyzed by using the calculation results. By simulating the design and construction measures of grouting reinforcement around the pipe gallery and adjusting the structural stiffness of the pipe gallery, the seismic response of the superstructure was obtained, and the effective control measures for improving the construction of the pipe gallery under the existing high-rise building were obtained. After the completion of the actual project, the soil samples before and after grouting reinforcement were extracted for indoor dynamic triaxial test. The test results could further support the improvement effect of grouting on the dynamic characteristics of foundation soil and the control effect on the seismic response of upper structure.
-
[1] SHAMSABADI A, SEDARAT H, KOZAK A.Seismic Soil Tunnel Structure Interaction Analysis of the Posey Webster Street Tunnels[C]//US-TAPAN Soil-Structure-Interaction Workshop.2001:1-21. [2] SHAMSABADI A, LAW H, AMINI M.Seismic Rock-Tunnel-Structure Interaction Analysis[C]//Elsevier Science Ltd:12th European Conference on Earthquake Engineering.2002:1-8. [3] WESAM A A, ALOZZO A W, UMAMAHESWARI N, et al.Study the Seismic Response of Reinforced Concrete High-Rise Building with Dual Framed Shear Wall System Considering the Effect of Soil Structure Interaction[J/OL].Materials Today(Proceedings), 2021:216-224.http://doi.org/10.1016/j.matpr.2020.12.111. [4] 李杰, 岳庆霞, 陈隽.地下综合管廊结构振动台模型试验与有限元分析研究[J].地震工程与工程振动, 2009, 29(4):41-45. [5] 史晓军, 陈隽, 李杰.地下综合管廊大型振动台模型试验研究[J].地震工程与工程振动, 2008, 28(6):116-123. [6] 蒋录珍, 陈隽, 李杰.非一致激励下综合管廊振动台试验的数值模拟[J].华中科技大学学报(城市科学版), 2008(4):203-206. [7] 汤爱平, 李志强, 冯瑞成.共同沟结构体系振动台模型试验与分析[J].哈尔滨工业大学学报, 2009, 41(6):1-5. [8] 李延涛, 刘欣宜, 温永刚, 等.平行双孔地铁隧道对上部结构的地震反应分析[J].四川建筑科学研究, 2018, 44(6):34-38. [9] 魏晓刚.煤矿巷道与采空区岩体结构地震动力灾变及地面建筑抗震性能劣化研究[D].阜新:辽宁工程技术大学, 2015. [10] 龚晓南.地基处理手册[M].3版.北京:中国建筑工业出版社, 2008.
点击查看大图
计量
- 文章访问数: 124
- HTML全文浏览量: 28
- PDF下载量: 2
- 被引次数: 0