DESIGN AND CONSTRUCTION OF PREFABRICATED SPINNING STEEL PIPE PILES WITH ENLARGED ENDS
-
摘要: 旋压扩大头钢管桩是近年来开发出的一种新型旋压钢管桩,其继承了传统旋压钢管桩的优点,改进了传统桩的桩端,提出具有掘削刃和相应螺旋纹构造的桩端,成为目前应用最广泛的旋压钢管桩之一。在总结介绍日本旋压扩大头钢管桩发展历程的基础上,对广西盛虎金属制品有限公司开发的旋压扩大头钢管桩特点、构造、设计方法、施工工艺和施工保障措施进行了系统的介绍,最后介绍了其在工程中的应用。Abstract: Spinning steel pipe piles with enlarged ends, simply named as STG piles, is a new kind of spinning steel pipe piles developed in recent years. It inherits the advantages of traditional spinning steel pipe piles and improves the structure of the traditional pile ends. A new type structure of pile ends with cutting edges and corresponding spiral threads is proposed, which has become one of the most widely used spinning steel pipe piles all over the world. On the basis of summaries to the evolution of spinning steel pipe piles with enlarged ends in Japan, the new type of spinning steel pipe piles developed by Guangxi Shenghu Metal Products Ltd. Company was introduced including the characteristics, scope of application, structure type, design procedure, construction process and guarantee measures under construction. Finally, a practice application of STG piles was introduced briefly.
-
UOTINEN V M, RANTALA J.Applications and Development of Modern Steel Pile Technology[J]. Procedia Engineering, 2013, 57:1173-1182. Finnish National Road Administration. Steel Pipe Piles[M]. Helsinki:Tielaitos, 2000. 成田信之. 鋼管杭一その設計と施工[M]. 东京都:昭和情報プロセス株式会社, 2009. LUTENEGGER A J. Historical Development of Iron Screw-Pile Foundations:1836-1900[J]. The International Journal for the History of Engineering & Technology, 2011, 81(1):108-128. A. B. Chance Company. Helical Pier Foundation Systems Technical Manual[S].NewYork:A. B. Chance Company, 1999. ELKASABGY M, NAGGAR M H. Axial Compressive Response of Large-Capacity Helical and Driven Steel Piles in Cohesive Soil[J]. Canadian Geotechnical Journal, 2015, 52(2):224-243. MOHAJERANI A, BOSNJAK D, BROMWICH D. Analysis and Design Methods of Screw Piles:a Review[J]. Soils & Foundations, 2016,56(1):115-128. 董天文, 梁力, 黄连壮, 等. 螺旋桩基础抗拔试验研究[J]. 岩土力学, 2009, 30(1):190-194. 胡伟, 刘顺凯, 张亚惠, 等. 单叶片全尺寸螺旋锚桩竖向拉拔试验研究[J]. 土木建筑与环境工程, 2017, 39(5):35-43. 高涌涛, 许强, 赵其华, 等. 微型钢管桩桩-土复合抗滑结构耗能特性研究[J] 岩石力学与工程学报,2020,39(3):621-628. 张新春, 韩春雨, 白云灿, 等. 螺旋桩承载特性受桩体几何结构影响的试验研究[J]. 结构工程师, 2019,35(2):178-183. 鋼管杭·鋼矢板技術協会, 回転杭工法施工管理要領[S]. 东京都:2017. 岛袋盛义, 岛袋云茜. 旋压扩头钢管桩:CN207498941U[P]. 2018-01-31. 广西壮族自治区住房和城乡建设厅. 装配式旋压扩大头钢管桩技术规程:DB/T 45-083-2019[S]. 南宁:广西科学技术出版社, 2019. 岛袋盛义, 岛袋云茜. 一种用于钢管桩的连接件:CN208328907U[P]. 2019-01-04. 中华人民共和国住房和城乡建设部. 建筑桩基技术规范:JGJ 94-2008[S]. 北京:中国建筑工业出版社, 2008. LUTENEGGER A J. Behavior of Grouted Shaft Helical Anchors in Clay[J]. Journal of the Deep Foundations Institute, 2011, 5(1):58-67. NAOTO W, HEMANTA H, MINORU O. Plate Loading Tests and Bearing Capacity Characteristics of Grouted Screw Pile Method[J]. Journal of the Society of Materials Science (Japan), 2011, 60(12):1138-1143. 中华人民共和国住房和城乡建设部. 建筑桩基检测技术规范:JGJ 106-2014[S]. 北京:中国建筑工业出版社, 2014.
点击查看大图
计量
- 文章访问数: 125
- HTML全文浏览量: 13
- PDF下载量: 5
- 被引次数: 0