EFFECT OF STRUCTURAL COLUMNS ON EXPLOSION RESISTANCE OF LOAD-BEARING MASONRY WALLS
-
摘要: 基于数值分析方法,利用LS-DYNA软件建立承重砌体墙抗爆分析计算模型。通过相关的抗爆试验文献验证了数值分析方法与爆炸荷载施加方法的正确性。为研究不同比例距离爆炸荷载下墙体的破坏形态和设置不同间距构造柱墙体的抗爆效果,以反映洞口尺寸影响的洞宽比θ为参数,分析不同洞宽比墙体在爆炸荷载下的动力响应和设置构造柱对墙体抗爆方案的影响。结果表明:设置构造柱可以有效地提高承重砌体墙的抗爆性能,构造柱间距不宜过大或过小,以3 m最为合理。随着洞宽比θ的增加,墙体破坏程度增加,当洞宽比θ较大时,设置2个小洞口墙体比设置1个大洞口墙体破坏程度更为严重。对于洞宽比θ较大的墙体,在两侧及洞口处增加构造柱后,墙体抗爆性能明显增强,但洞口下部的窗台墙仍会发生严重的破坏。在开洞处增设过梁,对抑制小开洞墙体的开裂效果很好,墙体未见明显破坏;而仅设置1个大洞口墙体的窗台墙仍然破坏严重,尚需进一步采取抗爆措施。Abstract: Based on the numerical analysis method, the calculation model of explosion resistance for load-bearing masonry walls was modelled by the software LS-DYNA. The validity of the model and the method of explosive load application were verified by relevant anti-explosion test literatures. The failure modes of walls under explosive loads with different distance proportions and the anti-explosive effect of structured columns with different spacing on walls were studied. The parameter of ratio for the opening width and wall width (θ) was put forward, which could reflect the influences of openings on walls. The dynamic responses of walls with different θ under explosive loads and the effect of setting structural columns as anti-explosion measures were analyzed. The results showed that the explosion resistance of load-bearing masonry walls could be effectively improved by setting structural columns. The spacing of structural columns should not be too large or too small, and the spacing of 3 m was the most reasonable. With the increase of θ, the damage degree of the walls increased. When θ was larger, the damage degree of walls with two small openings was more serious than that of with a large opening. For a wall with a larger θ, the explosion resistance of the wall was obviously enhanced by adding structural columns on both sides and at the opening, but the serious damage could still occur in the wall below the openings. The addition of lintels at the bottom of openings could efficiently control the cracking in walls with smaller openings, but in walls with larger opening, the damage still occured serisusly, the further reinforcing measure should be studied.
-
范俊余,方秦,陈力,等.砌体填充墙的抗爆性能[J].爆炸与冲击,2014,34(1):59-65. 张彦春,王仲琦,尤祖明,等.爆炸荷载下砌体墙破坏过程模拟研究[J].北京理工大学学报, 2010,30(10):1139-1142. ZHOU X Q, HAO H, DEEKS A. Numerical Modeling of Response and Damage of Masonry Walls to Blast Loading[J]. Transaction of Tianjin University,2006(12):132-137. 许三罗,方秦.弹性聚合物和碳纤维布加固的砌体墙抗爆性能的数值分析[J].解放军理工大学学报(自然科学版),2010,11(3):306-311. 王军国,吴祥云,李泽斌,等.聚脲加固黏土砖砌体抗爆性能试验研究[J].防护工程,2017,39(4):32-38. 韩永利,陈洋,陈龙珠.基于LS-DYNA的墙体抗燃气爆炸能力数值分析[J].防灾减灾工程学报,2010,30(3):298-302. DENNIS S T, BAYLOT J T, WOODSON S C. Response of 1/4-Scale Concrete Masonry Unit (CMU) Walls to Blast[J].Journal of Engineering Mechanics, 2002(2):134-142. 张正威,宋二祥,陆新征,等.核爆冲击波作用下空心砌块墙对主体结构的作用[J].工程力学,2008,25(5):73-78. 中华人民共和国住房和城乡建设部. 砌体结构设计规范:GB 50003-2011[S].北京:中国建筑工业出版社,2012. 都浩,邓芃,杜荣强.爆炸荷载作用下钢筋混凝土梁动力响应的数值分析[J].山东科技大学学报(自然科学版),2010, 29(6):50-54. 李猛深,李杰,李宏,等.爆炸荷载作用下钢筋混凝土梁的变形和破坏[J].爆炸与冲击, 2015, 35(2):177-183. 李忠献,师燕超.建筑结构抗爆分析理论[M].北京:科学出版社,2015. 王政,倪玉山,曹菊珍,等.冲击荷载下混凝土本构模型构建研究[J].高压物理学报, 2006, 20(4):337-344. 田力,赵玲清. 钢筋混凝土梁在冲击与破片联合作用下的动态响应分析[J].石家庄铁道大学学报(自然科学版), 2017,30(3):6-11. 张秀华,段忠东,张春巍.爆炸荷载作用下钢筋混凝土动力响应和破坏过程[J].东北林业大学学报, 2009,37(4):50-53.
点击查看大图
计量
- 文章访问数: 174
- HTML全文浏览量: 6
- PDF下载量: 6
- 被引次数: 0