中国科技核心期刊
RCCSE中国核心学术期刊
JST China收录期刊
中国建筑科学领域高质量科技期刊分级目录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钢板混凝土结构在核电厂工程中的应用研究

樊健生 丁然 孙运轮

樊健生, 丁然, 孙运轮. 钢板混凝土结构在核电厂工程中的应用研究[J]. 工业建筑, 2023, 53(9): 18-28. doi: 10.13204/j.gyjzG23090107
引用本文: 樊健生, 丁然, 孙运轮. 钢板混凝土结构在核电厂工程中的应用研究[J]. 工业建筑, 2023, 53(9): 18-28. doi: 10.13204/j.gyjzG23090107
FAN Jiansheng, DING Ran, SUN Yunlun. Research on the Application of Steel-Plate Concrete Structures in Nuclear Plant Engineering[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(9): 18-28. doi: 10.13204/j.gyjzG23090107
Citation: FAN Jiansheng, DING Ran, SUN Yunlun. Research on the Application of Steel-Plate Concrete Structures in Nuclear Plant Engineering[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(9): 18-28. doi: 10.13204/j.gyjzG23090107

钢板混凝土结构在核电厂工程中的应用研究

doi: 10.13204/j.gyjzG23090107
基金项目: 

国家重点研发计划项目课题(2022YFC3802005);国家自然科学基金项目(52121005,51890903)。

详细信息
    作者简介:

    樊健生,男,1975年出生,博士,教授。

    通讯作者:

    丁然,男,1988年出生,博士,副研究员,dingran@mail.tsinghua.edu.cn。

Research on the Application of Steel-Plate Concrete Structures in Nuclear Plant Engineering

  • 摘要: 钢板混凝土结构性能优越,在民用建筑、桥梁、隧道等工程中得到了越来越广泛的应用。当应用于核电厂时,钢板混凝土结构在受力特点、功能需求和施工建造方面表现出较强的特殊性,近年来国内外已经开展了大量钢板混凝土在核电厂工程中的应用研究,形成了较为完整的规范体系。文章对钢板混凝土结构在核电厂工程中的应用与研究现状进行综述,包括相关的结构设计规范情况、典型的结构构造形式、基本构件和单元力学性能及设计方法、特殊工况下(事故工况、大飞机撞击等)结构性能与设计方法。并针对核电厂特殊功能需求以及精细化设计建造方面的要求,提出了需要进一步研究的问题,包括各类型钢板混凝土基本单元的复杂静力性能试验;钢板混凝土结构在特殊工况下的受力性能和设计条件;合理简单的构造方式;模块加工精度、混凝土浇筑温度和模块变形控制、混凝土浇筑密实度和质量控制等关键建造技术。
  • [1] 樊健生, 丁然, 聂鑫, 等. 高性能双钢板混凝土结构研究与应用[J]. 建筑结构学报, 2022, 43(9):55-72.
    [2] 潘蓉,吴婧姝,张心斌. 钢板混凝土结构在核电工程中应用的发展状况[J].工业建筑, 2014,44(12):1-7

    ,67.
    [3] 樊健生,朱尧于,崔冰,等.钢板-混凝土组合结构桥塔研究及应用综述[J].土木工程学报,2023,56(4):61-71.
    [4] 宋神友,聂建国,徐国平,等.双钢板-混凝土组合结构在沉管隧道中的发展与应用[J].土木工程学报,2019,52(4):109-120.
    [5] 柏崎·刈羽核电站的固体废物焚烧炉厂房[EB/OL].[2023-09-01]. https://www.tepco.co.jp/cc/press/02072501-j.html.
    [6] Westinghouse Electric Company. Westinghouse AP1000 Design Control Document Rev. 17[EB/OL].[2023-09-01]. https://www.nrc.gov/docs/ML0832/ML083230868.html.
    [7] Mitsubishi Heavy Industries. Design Control Document for the US-APWR[EB/OL].[2023-09-01]. http://pbadupws.nrc.gov/docs/ML1109/ML110980211.pdf.
    [8] 邢继,徐国飞,王晓江."华龙一号"首堆核岛布置设计[J].核科学与工程,2022,42(3):539-548.
    [9] 沈斌,王友刚,张然, 等.60万kW高温气冷堆核电厂钢板混凝土剪力墙竖向荷载作用下单面耐火性能试验研究[J].工业建筑,2021,51(12):56-63.
    [10] American Institute of Steel Construction. Specification for Safety-Related Steel Structures for Nuclear Facilities:ANSI/AISC N690-2018[S]. Chicago:AISC, 2018.
    [11] 日本电力协会核能标准委员会. 钢板混凝土结构抗震设计技术规程:JEAC4618-2009[S]. 日本电力协会核能标准委员会, 2009.
    [12] 中华人民共和国住房和城乡建设部. 核电站钢板混凝土结构技术标准:GB/T 51340-2018[S]. 北京:中国计划出版社, 2018.
    [13] 中华人民共和国住房和城乡建设部. 组合结构设计规范:JGJ 138-2016[S]. 北京:中国建筑工业出版社, 2016.
    [14] 中华人民共和国交通运输部. 公路钢结构桥梁设计规范:JTG D64-2015[S]. 北京:人民交通出版社, 2015.
    [15] 邱盛源,樊健生,聂建国,等. 角钢连接件抗剪刚度试验及理论研究[J]. 中国公路学报, 2021, 34(3):136-146.
    [16] 唐亮,樊健生,聂建国, 等. 角钢连接件力学性能及混凝土脱空对其影响研究. 工程力学, 2020, 37(10):45-55.
    [17] TANG R Y, NIE X, DING R, et al. Tensile behaviour of transverse reinforcement with different connection methods in single steel-plate concrete composite structures[J]. Structures, 2023, 51:936-949.
    [18] WANG B X, DING R, FAN J S, et al. Shear performance of single steel-plate concrete composite beams with various transverse reinforcement configurations[J/OL]. Engineering Structures, 2022, 270[2023-09-01].https://doi.org/10.1016/j.engstruct.2022.114676.
    [19] YANG Y, WU B, XU LY, et al. Experimental study on the buckling behavior of double steel plate concrete composite slabs with stiffening ribs and tie plates[J/OL]. Engineering Structures, 2022, 255[2023-09-01].https://doi.org/10.1016/j.engstruct.2022.113895.
    [20] SEO J, VARMA A H. Steel-plate composite wall-to-wall T-joints:joint shear strength[J/OL]. Journal of Structural Engineering, 2019, 145(7)[2023-09-01].https://doi.org/10.1061/(ASCE)ST.1943-541X.0002317.
    [21] SEO J, VARMA A H. Behavior and design of steel-plate composite wall-to-wall corner or L-joints[J]. Nuclear Engineering and Design, 2017, 323:317-328.
    [22] 高啓恩. 基于UHPC的RC楼板-SC剪力墙节点抗震性能研究[D]. 北京:清华大学, 2023.
    [23] KONG S Y, FAN J S, NIE X, et al. Pullout behavior of lap splice connections between double-steel-plate composite walls and RC raft foundation in nuclear engineering[J/OL]. Engineering Structures, 2021, 230[2023-09-01].https://doi.org/10.1016/j.engstruct.2020.111720.
    [24] OZAKI M, AKITA S, OSUGA H, et al. Study on steel plate reinforced concrete panels subjected to cyclic in-plane shear[J]. Nuclear Engineering & Design, 2004, 228(1/2/3):225-244.
    [25] 高爱平,于跃,沈亮,等. 某核岛厂房钢板混凝土曲面墙滞回性能试验[J]. 建筑结构,2022,52(增刊1):1323-1328.
    [26] 于跃,沈亮,高爱平,等. 某核岛厂房转运清洗间曲面墙单向轴压试验[J]. 建筑结构,2022,52(增刊1):1313-1317.
    [27] WANG N, ZHOU F, QU Y G, et al. Flexural behavior of curved steel-plate composite (SC) walls under combined axial compression and cyclic lateral force[J/OL]. Engineering Structures, 2021, 245[2023-09-01].https://doi.org/10.1016/j.engstruct.2021.112919.
    [28] 刘红林. 不锈钢板-混凝土组合梁抗弯性能研究[D].长春:吉林建筑大学,2022.
    [29] 张有佳,王子彦,李小军, 等. C50赤铁矿混凝土中栓钉的抗剪性能试验及有限元研究[J].应用基础与工程科学学报,2022,30(5):1201-1215.
    [30] 于跃,马英,高爱平, 等.某核工程钢板混凝土结构插筋在重混凝土中的锚固性能试验[J]. 建筑结构,2022,52(增刊1):1329-1332.
    [31] SENER K C, VARMA A H, SEO J. Experimental and numerical investigation of the shear behavior of steel-plate composite (SC) beams without shear reinforcement[J]. Engineering Structures, 2016, 127:495-509.
    [32] SENER K C, VARMA A H. Steel-plate composite walls:experimental database and design for out-of-plane shear[J]. Journal of Constructional Steel Research, 2014, 100:197-210.
    [33] SENER K C, VARMA A H, AYHAN D. Steel-plate composite (SC) walls:out-of-plane flexural behavior, database, and design[J]. Journal of Constructional Steel Research, 2015, 108:46-59.
    [34] YANG Y, LIU J B, NIE X, et al. Experimental research on out-of-plane cyclic behavior of steel-plate composite walls[J]. Journal of Earthquake and Tsunami, 2016, 10(1):1-16.
    [35] 杨悦, 刘晶波, 樊健生, 等. 钢板-混凝土组合板受弯性能试验研究[J]. 建筑结构学报, 2013, 34(10):24-31.
    [36] 吴丽丽, 姜宇鹏, 张栋栋, 等. 简支钢板-混凝土组合板受弯性能及承载力分析[J]. 建筑结构学报, 2015, 36(12):125-134.
    [37] 郭全全, 杨列昂, 周耀, 等. 单钢板混凝土组合板面外承载力计算方法[J]. 工业建筑, 2016, 46(10):33-35.
    [38] SEO J, VARMA A H, SENER K, et al. Steel-plate composite (SC) walls:in-plane shear behavior, database, and design[J]. Journal of Constructional Steel Research, 2016, 119:202-215.
    [39] WANG J J, NIE X, BU F M, et al. Experimental study and design method of shear-dominated composite plate shear walls[J/OL]. Engineering Structures, 2020, 215[2023-09-01].https://doi.org/10.1016/j.engstruct.2020.110656.
    [40] BHARDWAJ S R, VARMA A H, MALUSHTE S R. Minimum requirements and section detailing provisions for steel-plate composite (SC) walls in safety-related nuclear facilities[J]. Engineering Journal, 2017, 2:89-107.
    [41] ZHANG K, VARMA A H, MALUSHTE S R, et al. Effect of shear connectors on local buckling and composite action in steel concrete composite walls[J]. Nuclear Engineering and Design, 2014, 269:231-239.
    [42] VARMA A H, MALUSHTE S R, SENER K C, et al. Steel-plate composite (SC) walls for safety related nuclear facilities:design for in-plane forces and out-of-plane moments[J]. Nuclear Engineering and Design, 2014, 269:240-249.
    [43] 黄城均, 宋晓冰. 双钢板混凝土组合结构平面内破坏准则研究[J]. 建筑结构, 2019, 49(4):123-128.
    [44] 黄城均, 朱天怡, 宋晓冰. 双钢板混凝土单元平面内屈服准则[J]. 上海交通大学学报, 2022, 56(4):422-430.
    [45] HUANG C J, CHEN S J, LENG Y B, et al. Experimental research on steel-concrete-steel sandwich panels subjected to biaxial tension compression[J/OL]. Journal of Constructional Steel Research, 2019, 162[2023-09-01].https://doi.org/10.1016/j.jcsr.2019.105725.
    [46] LIU R R, DING R, FAN J S, et al. Constitutive laws of softened UHPC in biaxial tension-compression:experimental study using a planar bi-directional element tester[J/OL]. Construction and Building Materials, 2023, 401[2023-09-01].https://doi.org/10.1016/j.conbuildmat.2023.132966.
    [47] BOOTH P N, VARMA A H, SENER K C, et al. Flexural behavior and design of steel-plate composite (SC) walls for accident thermal loading[J]. Nuclear Engineering and Design, 2015, 295:817-828.
    [48] HASHIMOTO J, TAKIGUCHI K, NISHIMURA K, et al. Experimental study on behavior of RC panels covered with steel plates subjected to missile impact[C]//Proceedings of 18th International Conference on Structure Mechanics in Reactor Technology. Beijing:2005.
    [49] KIM K, SUH Y, MOON I, et al. A study on the local impact behavior of the sc wall using actual test and simulation[J/OL].Engineering,2015[2023-09-01]. https://api.semanticscholar.org/CorpusID:201574496.
    [50] MIZUNO J, KOSHIKA N, SAWAMOTO Y, et al. Investigation on impact resistance of steel plate reinforced concrete barriers against aircraft impact part 1:test program and results[C]//Proceedings of the 18th International Conference on Structural Mechanics in Reactor Technology. Beijing:2005.
    [51] 唐若洋. 单钢板-混凝土组合结构抗冲击性能及应用研究[D]. 北京:清华大学, 2023.
    [52] RIERA J D. On the stress analysis of structures subjected to aircraft impact forces[J]. Nuclear Engineering and Design, 1968, 8(4):415-426.
    [53] LI J, MEI R, WANG Y, et al. Vibration analysis of third generation nuclear power plant considering soil-structure-interaction effect under the impact of large commercial aircraft[J/OL]. The Structural Design of Tall and Special Buildings, 2020, 29(16)[2023-09-01].https://doi.org/10.1002/tal.1796.
    [54] 韩鹏飞. 核工程双钢板混凝土结构抗大型商用飞机撞击研究[D]. 北京:清华大学, 2018.
  • 加载中
计量
  • 文章访问数:  292
  • HTML全文浏览量:  38
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-01
  • 网络出版日期:  2023-11-08

目录

    /

    返回文章
    返回