中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China收录期刊
中国建筑科学领域高质量科技期刊分级目录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冻土路基尺度效应理论研究进展与展望

汪双杰 陈建兵 金龙 董元宏

汪双杰, 陈建兵, 金龙, 董元宏. 冻土路基尺度效应理论研究进展与展望[J]. 工业建筑, 2023, 53(9): 45-53. doi: 10.13204/j.gyjzG23081216
引用本文: 汪双杰, 陈建兵, 金龙, 董元宏. 冻土路基尺度效应理论研究进展与展望[J]. 工业建筑, 2023, 53(9): 45-53. doi: 10.13204/j.gyjzG23081216
WANG Shuangjie, CHEN Jianbing, JIN Long, DONG Yuanhong. Research Advances and Prospect of Scale Effect Theory of Permafrost Roadbed[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(9): 45-53. doi: 10.13204/j.gyjzG23081216
Citation: WANG Shuangjie, CHEN Jianbing, JIN Long, DONG Yuanhong. Research Advances and Prospect of Scale Effect Theory of Permafrost Roadbed[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(9): 45-53. doi: 10.13204/j.gyjzG23081216

冻土路基尺度效应理论研究进展与展望

doi: 10.13204/j.gyjzG23081216
基金项目: 

第二次青藏高原综合科学考察研究(2019QZKK0905);中国交建科技研发项目(2020-ZJKJ-PTJS04,2020-ZJKJ-QNCX09,2020-ZJKJ-PTJS12)。

详细信息
    作者简介:

    汪双杰,男,1962年出生,教授级高级工程师。

    通讯作者:

    金龙,jlcoolmail@163.com。

Research Advances and Prospect of Scale Effect Theory of Permafrost Roadbed

  • 摘要: 多年冻土与路基工程之间复杂的水热力相互作用表现出显著的尺度效应,空间尺度、时间尺度和结构性态等都会对其产生影响。对冻土路基尺度效应的深入认识是揭示大尺度冻土路基热融风险机理、融沉防控的重要理论基础。近几十年来,基于室内外试验和数值分析等方法,冻土路基尺度效应研究从现象到机理,最终形成了理论体系,取得充分发展。文章总结了冻土路基尺度效应理论体系、研究方法,梳理了近年来在上边界条件、空间效应、时间效应和结构效应等方面的研究进展,并在此基础上对今后的研究重点提出了一些构想。
  • [1] CHEN D, WANG S, ZHANG X, et al. Experimental study on performance of crushed-rock embankment with heat-induced asphalt pavement[J/OL]. Transportation Geotechnics, 2019, 21[2023-08-12].https://doi.org/10.1016/j.trgeo.2019.100270.
    [2] DONG Y, CHEN J, YUAN K, et al.A field embankment test along the Gonghe-Yushu expressway in the permafrost regions of the Qinghai-Tibet Plateau[J/OL].Cold Regions Science and Technology,2020,170[2023-08-12].https://doi.org/10.1016/j.coldregions.2019.102941.
    [3] DONG Y, PEI W, LIU G, et al. In-situ experimental and numerical investigation on the cooling effect of a multi-lane embankment with combined crushed-rock interlayer and ventilated ducts in permafrost regions[J]. Cold Regions Science & Technology, 2014(104/105):97-105.
    [4] 陈冬根,朱英珍. 多年冻土区宽幅路基温度与变形规律试验研究[J].公路,2019,64(2):1-7.
    [5] 朱林楠.高原冻土区不同下垫面的附面层研究[J].冰川冻土,1988(1):8-14.
    [6] 袁堃,章金钊,樊凯,等.多年冻土地区空心块通风路基应用效果及数值模拟[J].公路交通科技,2013,30(1):56-62

    ,73.
    [7] 曹元兵,盛煜,吴吉春,等.上边界条件对多年冻土地温场数值模拟结果的影响分析[J].冰川冻土,2014,36(4):802-810.
    [8] 栗晓林,马巍,穆彦虎,等.高海拔多年冻土区高速公路分离式通风管路基的降温效果研究[J].岩石力学与工程学报,2022,41(增刊2):3488-3498.
    [9] 汪海年,窦明健. 青藏高原多年冻土区路基温度场数值模拟[J].长安大学学报(自然科学版),2006(4):11-15.
    [10] 白青波,李旭,田亚护. 路基温度场长期模拟中的地表热边界条件研究[J].岩土工程学报,2015,37(6):1142-1149.
    [11] 罗晓晓,俞祁浩,马勤国,等. 基于附面层理论的路基热边界模型[J].中南大学学报(自然科学版),2019,50(3):658-668.
    [12] CHAI M, LI N, LIU F, et al. A calculation model for ground surface temperature in high-altitude regions of the Qinghai-Tibet Plateau, China[J/OL]. Remote Sensing, 2022, 14(20)[2023-08-12].https://doi.org/10.3390/rs14205219.
    [13] 汪双杰,崔福庆,陈建兵,等.基于地气耦合模型的多年冻土区宽幅路基温度场数值模拟[J].中国公路学报,2016,29(6):169-178.
    [14] LING F, ZHANG T. A numerical model for surface energy balance and thermal regime of the active layer and permafrost containing unfrozen water[J]. Cold Regions Science and Technology, 2004, 38(1):1-15.
    [15] NIU F, LIU X, MA W, et al. Monitoring study on the boundary thermal conditions of duct-ventilated embankment in permafrost regions[J]. Cold Regions Science and Technology, 2008, 53(3):305-316.
    [16] AKE H. Mathematical model for paved surface summer and winter temperature:comparison of calculated and measured temperatures[J]. Cold Regions Science and Technology, 2004, 40(1/2):1-17.
    [17] ZHANG Y, CHEN W, CIHLAR J. A process-based model for quantifying the impact of climate change on permafrost thermal regimes[J/OL]. Journal of Geophysical Research:Atmospheres, 2003, 108[2023-08-12].https://doi.org/10.1029/2002JD003354.
    [18] 张明礼,温智,董建华,等.多年冻土活动层浅层包气带水-汽-热耦合运移规律[J].岩土力学,2018,39(2):561-570.
    [19] ZHANG M, WANG J, LAI Y. Hydro-thermal boundary conditions at different underlying surfaces in a permafrost region of the Qinghai-Tibet Plateau[J]. Science of the Total Environment, 2019, 670:1190-1203.
    [20] 汪双杰, 陈建兵. 青藏高原多年冻土路基温度场公路空间效应的非线性分析[J]. 岩土工程学报, 2008(10):1544-1549.
    [21] JIN L, WANG S, CHEN J, et al. Study on the height effect of highway embankments in permafrost regions[J]. Cold Regions Science and Technology, 2012, 83-84:122-130.
    [22] CHOU Y, SHENG Y, MA W. Study on the effect of the thermal regime differences in roadbed slopes on their thawing features in permafrost regions of Qinghai-Tibetan Plateau[J]. Cold Regions Science and Technology, 2008, 53(3):334-345.
    [23] CHOU Y, SHENG Y, WEI Z. Evaluation on thermal stability of embankments with different strikes in permafrost regions[J]. Cold Regions Science and Technology, 2009, 58(3):151-157.
    [24] LI D, WU Z, FANG J, et al. Heat stability analysis of embankment on the degrading permafrost district in the east of the Tibetan Plateau, China[J]. Cold Regions Science and Technology, 1998, 28(3):183-188.
    [25] LI J, SHENG Y. Analysis of the thermal stability of an embankment under different pavement types in high temperature permafrost regions[J]. Cold Regions Science and Technology, 2008, 54(2):120-123.
    [26] YU W, YI X, NIU Y, et al. Dynamic thermal regime of permafrost beneath embankment of Qinghai-Tibet highway under the scenarios of changing structure and climate warming[J]. Cold Regions Science and Technology, 2016, 126:76-81.
    [27] HAN F, YU W, YI X, et al. Thermal regime of paved embankment in permafrost regions along the Qinghai-Tibet engineering corridor[J]. Applied Thermal Engineering, 2016, 108:330-338.
    [28] 刘海苹, 丁琳, 杨扬, 等. 路基高度对高纬度多年冻土区路基温度场的影响[J].黑龙江大学工程学报, 2017, 8(1):25-29.
    [29] 黄俊杰, 苏谦, 钟彪, 等. 多年冻土斜坡路基失稳变形影响因素及特征研究[J]. 岩土力学, 2013, 34(3):703-710.
    [30] 田亚护, 张青龙, 穆彦虎, 等. 高温冻土区填土路基的地基融化固结变形分析[J]. 中国铁道科学, 2014, 35(3):1-7.
    [31] 马勤国, 赖远明, 吴道勇. 多年冻土区高等级公路路基温度场研究[J]. 中南大学学报(自然科学版), 2016, 47(7):2415-2423.
    [32] 汪双杰. 多年冻土区公路路基尺度效应理论与方法[M]. 北京:科学出版社, 2020.
    [33] 陈建兵, 刘志云, 金龙. 青藏公路冻土路基最大设计高度研究[J]. 西安科技大学学报, 2012, 32(2):198-203.
    [34] MA T, TANG T, HUANG X, et al. Thermal stability investigation of wide embankment with asphalt pavement for Qinghai-Tibet Expressway based on finite element method[J]. Applied Thermal Engineering, 2017, 115:874-884.
    [35] SONG Y, JIN L, PENG H, et al. Development of thermal and deformation stability of Qinghai-Tibet Highway under sunny-shady slope effect in southern tanglha region in recent decade[J]. Soils and Foundations, 2020, 60(2):342-355.
    [36] 俞祁浩, 程国栋, 何乃武,等. 不同路面和幅宽条件下冻土路基传热过程研究[J]. 自然科学进展, 2006(11):1482-1486.
    [37] TAKASHI A, VU T C, AKIO W. Heat storage of pavement and its effect on the lower atmosphere[J]. Atmospheric Environment, 1996, 30(3):413-427.
    [38] ZHANG Z, WU Q, LIU Y, et al. Thermal accumulation mechanism of asphalt pavement in permafrost regions of the Qinghai-Tibet Plateau[J]. Applied Thermal Engineering, 2018, 129:345-353.
    [39] 汤涛, 马涛, 黄晓明,等. 青藏高速公路宽幅路基温度场模拟分析[J]. 东南大学学报(自然科学版), 2015, 45(4):799-804.
    [40] YU Q, FAN K, YOU Y, et al. Comparative analysis of temperature variation characteristics of permafrost roadbeds with different widths[J]. Cold Regions Science and Technology, 2015, 117:12-18.
    [41] 朱东鹏, 董元宏, 刘戈,等. 宽幅沥青路面热效应对其下部土体热状态的影响[J]. 冰川冻土, 2014, 36(4):845-853.
    [42] 田亚护, 房建宏, 沈宇鹏. 多年冻土地区宽幅公路路基稳定性模拟[J]. 中国公路学报, 2015, 28(1):17-23.
    [43] 汪双杰, 陈建兵, 金龙, 等. 冻土路基热收支状态的尺度效应[J]. 中国公路学报, 2015, 28(12):9-16.
    [44] 张洪伟, 王学营, 赵鑫,等. 内蒙古高纬度地区公路沥青路面水热过程[J]. 长安大学学报:自然科学版, 2021,41(6):10-18.
    [45] LI X, MA W, MU Y, et al. Comparing thermal performances of expressways constructed with an integral embankment and two separated embankments in permafrost zones[J/OL]. Cold Regions Science and Technology, 2020, 170[2023-08-12].https://doi.org/10.1016/j.coldregions.2019.102939.
    [46] LIU Z, CUI F, CHEN J, et al. Study on the permafrost heat transfer mechanism and reasonable interval of separate embankment for the Qinghai-Tibet Expressway[J/OL]. Cold Regions Science and Technology, 2020, 170[2023-08-12].https://doi.org/10.1016/j.coldregions.2019.102952.
    [47] LI X, MA W, MU Y, et al. Wind field and thermal performances of an expressway constructed with two separated crushed-rock embankments in high-altitude permafrost zones[J/OL]. Transportation Geotechnics, 2021, 27[2023-08-12].https://doi.org/10.1016/j.trgeo.2020.100447.
    [48] 汪双杰, 王佐, 陈建兵. 青藏高原工程走廊冻土环境与高速公路布局[M]. 上海:上海科学技术出版社, 2017.
    [49] LIU W, YU W, HU D, et al. Crack damage investigation of paved highway embankment in the Tibetan Plateau permafrost environments[J]. Cold Regions Science and Technology, 2019, 163:78-86.
    [50] 汪双杰, 陈建兵, 章金钊. 保温护道对冻土路基地温特征的影响[J]. 中国公路学报, 2006(1):12-16,22.
    [51] 汪双杰, 陈建兵, 黄晓明. 冻土路基护道地温特征研究[J]. 岩石力学与工程学报, 2006(1):146-151.
    [52] WU Q, ZHANG Z, LIU Y. Long-term thermal effect of asphalt pavement on permafrost under an embankment[J]. Cold Regions Science and Technology, 2010, 60(3):221-229.
    [53] GAO S, WU Q, ZHANG Z, et al. Multiple time scale characteristics of permafrost temperature variations along the Qinghai-Xizang Highway[J]. Quaternary International, 2014, 349:178-186.
    [54] PEI W, JIN L, ZHANG M, et al. Study of the time-dependent thermal behavior of the multilayer asphalt concrete pavement in permafrost regions[J]. Construction and Building Materials, 2018, 193:162-172.
    [55] SUN Z, MA W, WU G L, et al. Permafrost degradation along the Qinghai-Tibet Highway from 1995 to 2020[J]. Advances in Climate Change Research, 2023, 14(2):248-254.
    [56] WANG S, XIONG L, ZHANG C, et al. An optimization model of a highway route scheme in permafrost regions[J]. Cold Regions Science and Technology, 2017, 138:84-90.
    [57] WANG S, JIN L, MU K, et al. The temporal effect of distress developments of frozen embankments in the permafrost regions along the Qinghai-Tibet Highway[J/OL]. Journal of Testing and Evaluation, 2019, 47(4)[2023-08-12].https://doi.org/10.1520/JTE20170487.
    [58] MA W, SHI C, WU Q, et al. Monitoring study on technology of the cooling roadbed in permafrost region of Qinghai-Tibet Plateau[J]. Cold Regions Science and Technology, 2006, 44(1):1-11.
    [59] 章金钊,霍明,陈建兵. 多年冻土地区公路路基稳定性技术问题与对策[M]. 北京:人民交通出版社, 2008.
    [60] 盛煜,张鲁新,杨成松,等. 保温处理措施在多年冻土区道路工程中的应用[J]. 冰川冻土, 2002,24(5):618-622.
    [61] WEN Z, SHENG Y, MA W, et al. Evaluation of EPS application to embankment of Qinghai-Tibetan Railway[J]. Cold Regions Science & Technology, 2005, 41(3):235-247.
    [62] 温智,盛煜,马巍,等. 保温法保护多年冻土的长期效果分析[J]. 冰川冻土, 2006,28(5):760-765.
    [63] 赵丽萍. XPS板在冻土路基工程中的应用研究[D]. 西安:长安大学, 2009.
    [64] 刘戈, 王双杰, 金龙,等.多年冻土区热棒路基应用效果[J]. 交通运输工程学报, 2016,16(4):59-67.
    [65] YU F, ZHANG M, LAI Y, et al. Crack formation of a highway embankment installed with two-phase closed thermosyphons in permafrost regions:field experiment and geothermal modelling[J]. Applied Thermal Engineering, 2017, 115:670-681.
    [66] 米维军, 王小军, 武小鹏. 关于青藏铁路热棒路基稳定性的探讨. 路基工程, 2010(2):129-131.
    [67] WANG S, JIN L, PENG H, ET AL. Damage analysis of the characteristics and development process of thermosyphon embankment along the Qinghai-Tibet Highway[J]. Cold Regions Science & Technology, 2017, 142:118-131.
    [68] 邰博文, 多年冻土区高速公路特殊路基结构变形机理及服役性能研究[D]. 北京:北京交通大学, 2018.
    [69] 喻文兵, 赖远明, 张学富, 等. 块石层与碎石层降温效果室内试验研究[J]. 冰川冻土, 2003,25(6):638-643.
    [70] YU W, LAI Y, ZHANG X, et al. Laboratory investigation on cooling effect of coarse rock layer and fine rock layer in permafrost regions[J]. Cold Regions Science & Technology, 2004, 38(2-3):229-238.
    [71] 叶学民. 多年冻土块石通风路基温度场数值模拟与分析[D]. 西安:长安大学, 2005.
    [72] 朱东鹏, 贾志裕, 赵永国. 青藏公路多年冻土区片、块石路基试验工程及应用研究[J]. 公路, 2008(9):332-337.
    [73] ZHOU Y,ZHANG M, PEI W, et al. Thermal-deformation behavior of a crushed-rock embankment along a high-grade highway in permafrost regions[J/OL]. Energy, 2023,283[2023-08-12]. https://doi.org/10.1016/j.energy.2023.128564.
    [74] 牛富俊, 程国栋, 赖远明. 青藏铁路通风路堤室内模型试验研究[J]. 西安工程学院学报, 2002,24(3):1-6.
    [75] NIU F, CHENG G, XIA H, et al. Field experiment study on effects of duct-ventilated railway embankment on protecting the underlying permafrost[J]. Cold Regions Science & Technology, 2006, 45(3):178-192.
    [76] NIU F, LIU X, MA W, et al. Monitoring study on the boundary thermal conditions of duct-ventilated embankment in permafrost regions[J]. Cold Regions Science & Technology, 2008, 53(3):305-316.
    [77] 朱东鹏, 袁堃, 陈建兵, 等. 高温多年冻土区公路通风管路基传热特征分析[J]. 中国公路学报, 2015,28(12):70-77.
    [78] 董元宏, 赖远明, 陈武. 多年冻土区宽幅公路路基降温效果研究:一种L型热管-块碎石护坡复合路基[J]. 岩土工程学报, 2012, 34(6):1043-1049.
    [79] LUO X, YU Q, MA Q, et al. Evaluation on the stability of expressway embankment combined with L-shaped thermosyphons and insulation boards in warm and ice-rich permafrost regions[J/OL]. Transportation Geotechnics, 2021,30[2023-08-12].https://doi.org/10.1016/j.trgeo.2021.100633.
    [80] 刘戈, 汪双杰, 孙红, 等. 透壁式通风管-块石复合路基降温效果模型试验及数值模拟[J]. 岩石工程学报, 2015, 37(2):284-291.
    [81] 刘戈, 汪双杰, 汪晶, 等. 多年冻土区高速公路路基新结构工程示范要就[J]. 灾害学, 2015(34):8-13.
    [82] ZHANG M, ZHANG X, LI S, et al. Evaluating the cooling performance of crushedrock interlayer embankments with unperforated and perforated ventilation ducts in permafrost regions[J]. Energy, 2015,93:870-881.
    [83] 汪双杰,金龙,穆柯,等. 高原冻土区公路路基病害及工程对策[J]. 中国工程科学, 2017,19(6):140-146.
    [84] 汪双杰, 陈建兵, 王佐. 高海拔高寒地区高速公路建设技术[M]. 上海:上海科学技术出版社, 2017.
  • 加载中
计量
  • 文章访问数:  118
  • HTML全文浏览量:  20
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-12
  • 网络出版日期:  2023-11-08

目录

    /

    返回文章
    返回