中国科技核心期刊
RCCSE中国核心学术期刊
JST China收录期刊
中国建筑科学领域高质量科技期刊分级目录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钢结构螺栓连接松动智能检测及监测技术的研究进展

霍林生 李宏男 杨卓栋 周靖

霍林生, 李宏男, 杨卓栋, 周靖. 钢结构螺栓连接松动智能检测及监测技术的研究进展[J]. 工业建筑, 2023, 53(9): 10-17. doi: 10.13204/j.gyjzG23080112
引用本文: 霍林生, 李宏男, 杨卓栋, 周靖. 钢结构螺栓连接松动智能检测及监测技术的研究进展[J]. 工业建筑, 2023, 53(9): 10-17. doi: 10.13204/j.gyjzG23080112
HUO Linsheng, LI Hongnan, YANG Zhuodong, ZHOU Jing. Research Advances of Intelligent Detection and Monitoring Techniques for Loosening of Steel Structure Bolted Connections[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(9): 10-17. doi: 10.13204/j.gyjzG23080112
Citation: HUO Linsheng, LI Hongnan, YANG Zhuodong, ZHOU Jing. Research Advances of Intelligent Detection and Monitoring Techniques for Loosening of Steel Structure Bolted Connections[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(9): 10-17. doi: 10.13204/j.gyjzG23080112

钢结构螺栓连接松动智能检测及监测技术的研究进展

doi: 10.13204/j.gyjzG23080112
基金项目: 

国家自然科学基金资助项目(52178274)。

详细信息
    作者简介:

    霍林生,男,1975年出生,博士,教授,lshuo@dlut.edu.cn。

    通讯作者:

    李宏男,hnli@dlut.edu.cn。

Research Advances of Intelligent Detection and Monitoring Techniques for Loosening of Steel Structure Bolted Connections

  • 摘要: 螺栓连接是钢结构中最常见的连接形式,其松动和脱落会使得结构的承载能力降低,导致结构产生安全隐患。为避免工程事故的发生,近年来研究人员提出了许多螺栓松动的检测方法。文章综述了一些常见的螺栓松动检测技术的工作原理及其研究进展,包括压电传感技术、光纤传感技术、数字图像处理技术、敲击声法,并对未来螺栓失效检测技术的发展方向进行了探讨。
  • [1] CHEN D D, SHEN Z H, FU R L, et al. Coda wave interferometry-based very early stage bolt looseness monitoring using a single piezoceramic transducer[J/OL]. Smart Materials and Structures, 2022,31(3)[2023-08-01].https://iopscience.iop.org/article/10.1088/1361-665X/ac5128/meta.
    [2] 霍林生, 张晨晨, 赵楠. 基于压电陶瓷的销轴连接受力状态监测[J]. 压电与声光,2022,44(1):48-52.
    [3] 陈国达, 郗枫飞, 计时鸣, 等. 螺栓无损检测方法综述[J]. 制造技术与机床, 2017,43(11):22-28.
    [4] 霍林生, 田树晓, 王靖凯, 等. 高强螺栓应力锈蚀的声发射特征[J]. 无损检测, 2022,44(1):42-48.
    [5] 郭珍珠, 赵伟, 陈涵深, 等. 基于图像识别的高强度螺栓松动检测方法的研究[J]. 工业建筑, 2022,52(2):175-179

    ,195.
    [6] 盛永军. 采用高强度螺栓连接件的钢-混凝土组合梁力学性能研究[J]. 工业建筑, 2021,51(9):121-126.
    [7] 张天雄, 王元清, 陈志华, 等. 不锈钢高强度螺栓机械性能与施拧方法试验研究[J]. 工业建筑, 2022,52(7):98-105

    ,97.
    [8] 赵海, 胡冰. 风电机组高强螺栓断裂原因分析[J]. 风能, 2018,23(3):70-74.
    [9] 陈栩坤. 轴流式风机叶轮脱落事故原因分析及改进措施[J]. 山东工业技术, 2016,12(22):36-45.
    [10] 王国印. 大型磨机筒节联接螺栓断裂事故的分析处理[J]. 中国战略新兴产业, 2018,10(32):207-211.
    [11] 罗国权. 螺栓疲劳破坏分析[J]. 建筑结构, 2009,39(增刊2):326-328.
    [12] HUO L S, CHEN D D, KONG Q Z, et al. Smart washer:a piezoceramic-based transducer to monitor looseness of bolted connection[J/OL]. Smart Materials and Structures, 2017,26(2)[2023-08-01].https://iopscience.iop.org/article/10.1088/1361-665X/26/2/025033/meta.
    [13] HUO L S, CHEN D D, LIANG Y B, et al. Impedance based bolt pre-load monitoring using piezoceramic smart washer[J/OL]. Smart Materials and Structures, 2017,26(5)[2023-08-01].https://iopscience.iop.org/article/10.1088/1361-665X/aa6a8e/meta.
    [14] WANG B, HUO L S, CHEN D D, et al. Impedance-based pre-stress monitoring of rock bolts using a piezoceramic-based smart washer:a feasibility study[J]. Sensors, 2017,17(2):21-30.
    [15] PARVASI S M, HO S C M, KONG Q, et al. Real time bolt preload monitoring using piezoceramic transducers and time reversal technique:a numerical study with experimental verification[J/OL]. Smart Materials and Structures, 2016,25(8)[2023-08-01].https://iopscience.iop.org/article/10.1088/0964-1726/25/8/085015.
    [16] HUO L, WANG F, LI H, et al. A fractal contact theory based model for bolted connection looseness monitoring using piezoceramic transducers[J/OL]. Smart Materials and Structures, 2017,26(10)[2023-08-01].https://iopscience.iop.org/article/10.1088/1361-665X/aa6e93/meta.
    [17] RUAN J, ZHANG Z, WANG T, et al. An anti-noise real-time cross-correlation method for bolted joint monitoring using piezoceramic transducers[J]. Smart Structures and Systems, 2015,16(2):281-294.
    [18] CAI J, SHI L, YUAN S, et al. High spatial resolution imaging for structural health monitoring based on virtual time reversal[J/OL]. Smart Materials and Structures, 2011,20(5)[2023-08-01].https://iopscience.iop.org/article/10.1088/0964-1726/20/5/055018/meta.
    [19] WU G N, XU C, DU F, et al. A modified time reversal method for guided wave detection of bolt loosening in simulated thermal protection system panels[J/OL]. Complexity, 2018[2023-08-01].https://doi.org/10.1155/2018/8210817.
    [20] DU F, XU C, ZHANG J. A bolt preload monitoring method based on the refocusing capability of virtual time reversal[J/OL]. Structural Control and Health Monitoring, 2019,26(8)[2023-08-01].http://dx.chinadoi.cn/10.1002/stc.2370.
    [21] ZHANG Z, LIU M, SU Z, et al. Quantitative evaluation of residual torque of a loose bolt based on wave energy dissipation and vibro-acoustic modulation:a comparative study[J]. Journal of Sound and Vibration, 2016,383:156-170.
    [22] WANG F, SONG G. Bolt early looseness monitoring using modified vibro-acoustic modulation by time-reversal[J]. Mechanical Systems and Signal Processing, 2019,130:349-360.
    [23] ZHAO N, HUO L, SONG G. A nonlinear ultrasonic method for real-time bolt looseness monitoring using PZT transducer-enabled vibro-acoustic modulation[J]. Journal of Intelligent Material Systems and Structures, 2020,31(3):364-376.
    [24] ZHAO N, HUO L S, SONG G B. Vibration acoustic modulation for bolt looseness monitoring based on frequency-swept excitation and bispectrum[J/OL]. Smart Materials and Structures, 2023,32(3)[2023-08-01].https://iopscience.iop.org/article/10.1088/1361-665X/acb579.
    [25] 丁杰城, 王会平, 袁博, 等. 能量熵与支持向量机融合导波螺栓预紧力识别[J]. 计算机集成制造系统,2022,28(4):1001-1010.
    [26] 姜世宇, 徐菁, 任师训, 等. 基于压电阻抗和卷积神经网络的螺栓球节点健康监测[J]. 青岛理工大学学报, 2023,44(2):43-50.
    [27] 王琳涛, 张先连, 刘检华, 等. 机理与数据融合的螺栓连接松脱预测[J].计算机集成制造系统,2021,27(3):692-700.
    [28] PAVELKO I, PAVELKO V, KUZNETSOV S, et al. Bolt-joint structural health monitoring by the method of electromechanical impedance[J]. Aircraft Engineering and Aerospace Technology, 2014,86(3):207-214.
    [29] WANG F, SONG G. A novel percussion-based method for multi-bolt looseness detection using one-dimensional memory augmented convolutional long short-term memory networks[J/OL]. Mechanical Systems and Signal Processing, 2021,161[2023-08-01].https://doi.org/10.1016/j.ymssp.2021.107955.
    [30] ZHOU L, CHEN S X, NI Y Q, et al. EMI-GCN:a hybrid model for real-time monitoring of multiple bolt looseness using electromechanical impedance and graph convolutional networks[J/OL]. Smart Materials and Structures, 2021,30(3)[2023-08-01].https://iopscience.iop.org/article/10.1088/1361-665X/abe292.
    [31] DU F, WU S W, XU C, et al. Electromechanical impedance temperature compensation and bolt loosening monitoring based on modified unet and multitask learning[J]. IEEE Sensors Journal, 2023,23(5):4556-4567.
    [32] 张佰真铭, 籍长志, 王刚, 等. 光纤健康监测方法在土木工程中的应用进展[J]. 消防界(电子版), 2016,8(4):88-89.
    [33] 雷雨恒, 任亮, 李宏男, 等. 基于逆有限元法的形状还原传感阵列及桥梁挠度监测试验[J]. 工程力学,2022,39(11):89-96.
    [34] 雷雨恒, 任亮, 刘强平, 等. 基于应变响应反演技术的弓网动态接触力监测方法及应用研究[J]. 机械强度,2022,44(6):1300-1306.
    [35] DUAN C, ZHANG H Y, LI Z S, et al. FBG smart bolts and their application in power grids[J]. IEEE Transactions on Instrumentation and Measurement, 2020,69(5):2515-2521.
    [36] DENG S H, WANG T, TAN B H, et al. Theoretical and experimental study on FBG bending sensor for quantitative monitoring of bolt looseness[J/OL]. Measurement, 2023,216[2023-08-01].https://doi.org/10.1016/j.measurement.2023.113002.
    [37] KHOMENKO A, KORICHO E G, HAQ M, et al. Bolt tension monitoring with reusable fiber Bragg-grating sensors[J]. Journal of Strain Analysis for Engineering Design, 2016,51(2):101-108.
    [38] REN L, FENG T Z, HO M, et al. A smart "shear sensing" bolt based on FBG sensors[J]. Measurement, 2018,122:240-246.
    [39] 师琪, 任亮, 尤润州, 等. 基于光纤光栅传感器的智能螺栓开发及应用[J]. 仪表技术与传感器, 2020,455(12):10-15.
    [40] CHEN D D, HUO L S, LI H N, et al. A fiber bragg grating (FBG)-enabled smart washer for bolt pre-load measurement:design, analysis, calibration, and experimental validation[J/OL]. Sensors, 2018,18(8)[2023-08-01].https://www.mdpi.com/1424-8220/18/8/2586.
    [41] DONG C Z, CATBAS F N. A review of computer vision-based structural health monitoring at local and global levels[J]. Structural Health Monitoring, 2021,20(2):692-743.
    [42] YE X W, DONG C Z, LIU T. A review of machine vision-based structural health monitoring:methodologies and applications[J/OL]. Journal of Sensors, 2016[2023-08-01].https://doi.org/10.1155/2016/7103039.
    [43] RAMANA L, CHOI W, CHA Y J. Fully automated vision-based loosened bolt detection using the Viola-Jones algorithm[J]. Structural Health Monitoring, 2019,18(2):422-434.
    [44] CHA Y J, YOU K, CHOI W. Vision-based detection of loosened bolts using the hough transform and support vector machines[J]. Automation in Construction, 2016,71:181-188.
    [45] 王宝丽, 于龙. 中低速磁浮F轨紧固螺栓松动故障检测[J]. 信息技术, 2019,43(8):88-92

    ,97.
    [46] PARK J H, HUYNH T C, CHOI S H, et al. Vision-based technique for bolt-loosening detection in wind turbine tower[J]. Wind and Structures, 2015,21(6):709-726.
    [47] 周靖, 刘煜, 霍林生. 基于机器视觉的螺栓松动旋转角度测量[J]. 机械设计与研究, 2021,37(4):159-162

    ,175.
    [48] ZHAO X F, ZHANG Y, WANG N N. Bolt loosening angle detection technology using deep learning[J/OL]. Structural Control and Health Monitoring, 2019,26(1)[2023-08-01].http://dx.chinadoi.cn/10.1002/stc.2292.
    [49] PAN X, YANG T Y. Image-based monitoring of bolt loosening through deep-learning-based integrated detection and tracking[J]. Computer-Aided Civil and Infrastructure Engineering, 2022,37(10):1207-1222.
    [50] LAO W L, CUI C, ZHANG D K, et al. Computer vision-based autonomous method for quantitative detection of loose bolts in bolted connections of steel structures[J/OL]. Structural Control and Health Monitoring, 2023[2023-08-01].https://doi.org/10.1155/2023/8817058.
    [51] ZHANG Y, YUEN K V. Bolt damage identification based on orientation-aware center point estimation network[J]. Structural Health Monitoring-an International Journal, 2022,21(2):438-450.
    [52] WANG S X, WU J, ZHAO Z, et al. Bolt loosening angle detection based on binocular vision[J/OL]. Measurement Science and Technology, 2023,34(3)[2023-08-01].https://iopscience.iop.org/article/10.1088/1361-6501/aca218/meta.
    [53] PAN X, TAVASOLI S, YANG T Y. Autonomous 3D vision-based bolt loosening assessment using micro aerial vehicles[J]. Computer-Aided Civil and Infrastructure Engineering, 2023:1-12.
    [54] LI Z J, ADAMU K, YAN K, et al. Detection of nut-bolt loss in steel bridges using deep learning techniques[J/OL]. Sustainability, 2022,14(17)[2023-08-01].https://www.mdpi.com/2071-1050/14/17/10837.
    [55] 赵欣欣, 钱胜胜, 刘晓光. 基于卷积神经网络的铁路桥梁高强螺栓缺失图像识别方法[J]. 中国铁道科学, 2018,39(4):56-62.
    [56] ZHOU J, HUO L S. Computer vision-based detection for delayed fracture of bolts in steel bridges[J/OL]. Journal of Sensors, 2021[2023-08-01].https://doi.org/10.1155/2021/8325398.
    [57] YANG Z L, ZHAO Y D, XU C. Detection of missing bolts for engineering structures in natural environment using machine vision and deep learning[J/OL]. Sensors, 2023,23(12)[2023-08-01].https://doi.org/10.3390/s23125655.
    [58] 陈欣瑞, 周洋, 赵屹涛, 等. 基于改进YOLOv5的移动端螺栓缺失检测方法[J]. 现代制造工程, 2022(11):108-114,143.
    [59] KONG Q, ZHU J, HO S C M, et al. Tapping and listening:a new approach to bolt looseness monitoring[J/OL]. Smart Materials and Structures, 2018,27(7)[2023-08-01].https://iopscience.iop.org/article/10.1088/1361-665X/aac962/meta.
    [60] YUAN R, LV Y, KONG Q Z, et al. Percussion-based bolt looseness monitoring using intrinsic multiscale entropy analysis and BP neural network[J/OL]. Smart Materials and Structures, 2019,28(12)[2023-08-01].https://iopscience.iop.org/article/10.1088/1361-665X/ab3b39/meta.
    [61] WANG F R, HO S C M, SONG G B. Modeling and analysis of an impact-acoustic method for bolt looseness identification[J/OL]. Mechanical Systems and Signal Processing, 2019,133[2023-08-01]. https://doi.org/10.1016/j.ymssp.2019.106249.
    [62] ZHANG Y, ZHAO X, SUN X, et al. Bolt loosening detection based on audio classification[J]. Advances in Structural Engineering, 2019,22(13):2882-2891.
    [63] YANG Z, HUO L. Bolt preload monitoring based on percussion sound signal and convolutional neural network (CNN)[J]. Nondestructive Testing and Evaluation, 2022,37(4):464-481.
    [64] LIU P, WANG X, CHEN T, et al. Research on a percussion-based bolt looseness identification method based on phase feature and convolutional neural network[J/OL]. Smart Materials and Structures, 2023,32(3)[2023-08-01].https://iopscience.iop.org/article/10.1088/1361-665X/acb4cb/meta.
    [65] YUAN R, LV Y, XU S, et al. ResNet-integrated very early bolt looseness monitoring based on intrinsic feature extraction of percussion sounds[J/OL]. Smart Materials and Structures, 2023,32(3)[2023-08-01].https://iopscience.iop.org/article/10.1088/1361-665X/acb2a0/meta.
    [66] YUAN C, WANG S, QI Y, et al. Automated structural bolt looseness detection using deep learning-based prediction model[J/OL]. Structural Control and Health Monitoring, 2022,29(3)[2023-08-01].https://doi.org/10.1002/stc.2899.
  • 加载中
计量
  • 文章访问数:  282
  • HTML全文浏览量:  274
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-01
  • 网络出版日期:  2023-11-08

目录

    /

    返回文章
    返回