Research on Surface Deformation Resistance of Split-Type Protective Plates for Transmission Towers with High-Low Legs
-
摘要: 以采动区山地边坡地带典型220 kV高低腿输电铁塔为对象,考虑塔腿级差(0,1,2,3 m)、大板厚度(200,400,600 mm)、地表变形方向(0°,45°,90°和135°)等因素,分析评估了新型分体式防护大板在地表水平拉伸、水平压缩、正曲率和负曲率作用下的抗地表变形性能。研究结果表明:分体式防护大板能有效降低高低腿铁塔的杆件内力和基础相对位移,且降低效果与地表变形类型、地表变形方向、塔腿级差密切相关;增大分体式防护大板的厚度可有效提高其保护效果,但当板厚增大到一定程度后其保护效果继续增大的趋势不明显,400 mm是分体式大板的最优厚度;当分体式大板的长度方向与地表水平变形或曲率变形的方向一致时,大板的抗变形性能可以得到充分发挥,而在其他方向的地表变形下效果相对较差。Abstract: A typical 220 kV transmission tower with high-low legs in mountainous slope areas of mining areas was taken as the object, and factors such as tower leg difference (0, 1, 2, 3 m), plate thickness (200, 400, 600 mm) and surface deformation direction (0°, 45°, 90°, 135°) were considered to study the surface deformation resistance of the split-type protective plate under the action of horizontal tension, horizontal compression, positive and negative curvature of the surface. The results indicated that the split-type protective plate could effectively reduce the axial force and relative displacement of the foundation of the transmission tower with high-low legs, and its protective effect was closely related to the type of surface deformation, direction of surface deformation, and tower leg level difference. The protective effect of the split-type protective plate increased with the increase of plate thickness, but when the plate thickness increased to a certain extent, its comprehensive protective effect no longer significantly increased with the increase of thickness. 400 mm was the optimal thickness for the split-type protective plate to balance the protective effect and economy. When the length direction of the split-type large plate was consistent with the direction of horizontal or curvature deformation on the surface, the protective effect of the large plate could be fully utilized, but the effect was relatively poor under surface deformation along other directions.
-
Key words:
- high-low legs /
- transmission towers /
- split-type /
- protective plate /
- surface deformation
-
[1] 史振华.采空区输电线路直线自立塔基础沉降及处理方案[J].山西电力技术, 1997(3):18-20,35. [2] 孙俊华.煤矿采空区线路设计技术[J].山西电力, 2004(3):13-14. [3] 代泽兵,鲁先龙,程永锋.煤矿采空区架空输电线路基础研究[J].武汉大学学报(工学版), 2009, 42(增刊1):312-316. [4] 袁广林,杨庚宇,张云飞.地表变形对输电铁塔内力和变形的影响规律[J].煤炭学报, 2009, 34(8):1043-1047. [5] 舒前进,袁广林,郭广礼,等.采煤沉陷区输电铁塔复合防护板基础抗变形性能及其板厚取值研究[J].防灾减灾工程学报, 2012, 32(3):294-299. [6] 舒前进.采动区超高压输电铁塔破坏机理与变形控制技术研究[D].徐州:中国矿业大学, 2013. [7] 谭晓哲.输电铁塔开孔复合板基础抗地表变形性能研究[D].徐州:中国矿业大学, 2015. [8] 刘春城,查传明,王刚,等.土层水平运动下中空式混凝土复合防护大板基础研究[J].科学技术与工程,2015,15(33):212-217,223. [9] 张宏杰,杨风利,张鑫,等.基于现场实测沉降数据的复合防护板基础铁塔承载力评估[J].建筑结构,2018,48(13):90-95. [10] 刘继武,韩恺,闫炜炀.山西采动影响区输电线路塔基区水土流失特点及防治措施[J].山西电力, 2021(5):23-26. [11] 秦锋明,杨承矩.输电线路铁塔基础设计中的环境保护问题[J].广东输电与变电技术, 2006(4):58-60. [12] 姜宏玺,张华英.输电线路自平衡交叉基础[J].电力建设, 2011, 32(5):53-57. [13] 钟维军,庞红旗.山地输电铁塔掏挖式、岩石嵌固式与板式基础的比较分析[J].浙江电力, 2013, 32(7):15-17. [14] 吕振,李小利.杭来湾煤矿采空区35 kV架空输电线路基础设计[J].山西建筑, 2020, 46(10):82-83. [15] 鲁先龙,程永锋.斜坡地形输电线路基础和杆塔的配合技术[J].电力建设,2011,32(8):29-33. [16] 薛乐.输电线路铁塔长短腿与高低基础配置的优化研究[D].长春:吉林建筑大学, 2017. [17] 侯晓燕,崔强,鲁先龙,等.输电线路高低腿杆塔基础配置策略及软件研发[J].地下空间与工程学报,2014,10(增刊2):1917-1921.
点击查看大图
计量
- 文章访问数: 101
- HTML全文浏览量: 10
- PDF下载量: 2
- 被引次数: 0