Research on Mechanical Properties of Hybrid Fibers Reinforced Rubber Concrete
-
摘要: 为探究混掺纤维对橡胶混凝土工作性能和力学性能的作用,以混掺钢-玻璃纤维增强橡胶混凝土为研究对象,进行了坍落度测试,以及轴心抗压、劈裂抗拉和四点弯曲试验,分析了钢纤维掺量、玻璃纤维掺量和玻璃纤维长度对橡胶混凝土工作性能、力学性能和脆性系数的影响规律。研究结果表明:掺入钢纤维和玻璃纤维会使橡胶混凝土的工作性能变差,当体积掺量相同时,玻璃纤维的影响更大;不论是单掺纤维试件还是混掺纤维试件,橡胶混凝土的力学性能总体上随钢纤维掺量增加而增大,而随玻璃纤维掺量的增加先增大后降低;更长的玻璃纤维可以更有效地抑制裂缝的发展,从而更有效地提高橡胶混凝土的力学性能;混掺纤维能有效降低橡胶混凝土的脆性系数,提高橡胶混凝土的韧性。Abstract: In order to study the effects of hybrid fibers on the workability and mechanical properties of rubber concrete, the slump, axial compression, splitting tensile and four-point bending tests were carried out. Taking the hybrid steel-glass fibers reinforced rubber concrete as the research object, the influence of steel fibers content, glass fibers content and glass fibers length on the workability, mechanical properties and brittle coefficient of rubber concrete was analyzed. The results showed that adding steel fibers and glass fibers decreased the workability of rubber concrete, and the influence of glass fibers were greater when the volume content was the same; as the steel fibers content increased, the mechanical properties of rubber concrete increased; as the glass fibers content increased, the mechanical properties of rubber concrete first increased and then decreased; longer glass fibers could inhibit the development of cracks more effectively, thus longer fibers improved the mechanical properties of rubber concrete more; hybrid fibers could effectively reduce the brittleness coefficient of rubber concrete and improve the toughness of rubber concrete.
-
Key words:
- concrete /
- waste rubber /
- steel fibers /
- glass fibers /
- workability /
- mechanical properties
-
[1] 熊哲, 麦广浩, 陈晓攀, 等. GFRP筋与海水海砂混凝土的黏结疲劳性能[J]. 中国公路学报, 2022, 35(2):259-268. [2] XIONG Z, WEI W, HE S H, et al. Dynamic bond behaviour of fibre-wrapped basalt fibre-reinforced polymer bars embedded in sea sand and recycled aggregate concrete under high-strain rate pull-out tests[J/OL]. Construction and Building Materials, 2021, 276[2023-09-05].https://doi.org/10.1016/j.conbuildmat.2020.122195. [3] 薛刚, 孙立所, 侯玮华, 等. 橡胶混凝土抗折强度及细观破坏机理研究[J]. 混凝土, 2021, 381(7):43-47. [4] 陈卓明. 橡胶混凝土界面性能的研究[D]. 广州:广东工业大学, 2019. [5] 张向东, 蔡广来, 徐跃博. 橡胶颗粒代替粉煤灰改良CFG桩抗冻性能研究[J]. 公路, 2022, 67(7):93-99. [6] 刘晓勇, 谈至明, 施钟毅. 路用橡胶水泥混凝土研究综述[J]. 公路, 2008,63(4):186-190. [7] TANG Y C, FENG W H, CHEN Z, et al. Fracture behavior of a sustainable material:Recycled concrete with waste crumb rubber subjected to elevated temperatures[J/OL]. Journal of Cleaner Production, 2021,318[2023-09-05]. https://doi.org/10.1016/j.jclepro.2021.128553. [8] 林强, 刘赞群, 禹雷, 等. 乳化沥青橡胶混凝土的力学性能[J]. 复合材料学报, 2023, 40(3):1576-1584. [9] 郭永昌, 刘锋, 陈贵炫, 等. 橡胶混凝土的冲击压缩试验研究[J]. 建筑材料学报, 2012, 15(1):139-144. [10] 郭小农, 沈祖炎, 李元齐, 等. 国产结构用铝合金材料本构关系及物理力学性能研究[J]. 建筑结构学报, 2007, 28(6):110-117. [11] 郭小农, 熊哲, 罗永峰, 等. 铝合金板式节点弯曲刚度理论分析[J]. 建筑结构学报, 2014, 35(10):144-150. [12] 郭琦, 吴梦, 孙虎平, 等. 考虑初始随机缺陷的橡胶混凝土破坏形态研究[J]. 西安建筑科技大学学报(自然科学版), 2020, 52(6):806-812. [13] 孔德成, 安明喆, 贾方方. 聚丙烯粗纤维超高性能混凝土的断裂性能[J].公路, 2021, 66(5):281-285. [14] 朱江, 李旭东, 张东升. 不同分布的钢纤维改性橡胶混凝土性能研究[J]. 混凝土, 2013, 281(3):69-72. [15] 吕志恒, 程铭, 蒋喜生, 等. 玻璃纤维和聚丙烯纤维改善混凝土微观结构研究[J]. 中外公路, 2020, 40(6):267-270. [16] 唐昀超, 陈正, 黄钊丰, 等. 基于U-net神经网络算法和改进的细化算法的水坝混凝土裂缝测量[J]. 实验力学, 2022, 37(2):209-220. [17] 霍彦霖, 孙华阳, 刘天安, 等. 混杂纤维增强应变硬化水泥基复合材料抗弯冲击性能[J]. 复合材料学报, 2022, 39(11):5086-5097. [18] 朱鹏宇, 万后林, 朱叶, 等. 基于正交试验法的混杂纤维橡胶混凝土力学性能试验研究[J]. 复合材料科学与工程, 2021, 335(12):73-77. [19] 孙杰, 孙明星, 冯川, 等. 碳-玻璃混杂纤维改性橡胶混凝土抗冻性研究[J]. 水利与建筑工程学报, 2022, 20(2):101-107.
点击查看大图
计量
- 文章访问数: 116
- HTML全文浏览量: 21
- PDF下载量: 0
- 被引次数: 0