Research on Ultrasonic Tomography of Concrete Hole Defects Based on Multi-Parameter Coupling and Inversion Initial Value Correction
-
摘要: 超声波法与层析成像技术相结合是实现混凝土孔洞缺陷可视化检测的常用方法。针对以单一声参数为超声判据易导致缺陷误判漏判的问题,提出超声波多参数耦合的缺陷综合判别方法;针对以初始波速经验赋值和走时误差均匀分配为特征的层析成像精度不高的问题,提出基于反演初始值修正的图像重建方法。并开展多种孔洞尺寸、孔洞数量工况下的混凝土超声检测试验,检验了改进方法的有效性。结果表明:基于声速-幅值-频率三参数耦合的缺陷综合判别可实现混凝土孔洞缺陷的精准定位,其精度优于单参数或双参数耦合的判别方法;基于反演初始值修正的超声层析成像方法能准确赋值波速迭代初始值并使走时误差分配更符合缺陷分布规律,可准确识别直径5 mm以上的孔洞。
-
关键词:
- 声速-幅值-频率耦合 /
- 反演初始值 /
- 孔洞缺陷 /
- 超声波法 /
- 层析成像
Abstract: The combination of ultrasonic method and tomographic imaging technology is a common method to realize the visual defection of concrete hole defects. Herein, a comprehensive identification method was proposed to address the problem of defect misjudgment and missing judgment caused by using a single acoustic parameter as the criterion for ultrasonic testing. Additionally, an image reconstruction method based on inversion initial value correction was used to address the problem of low accuracy in tomographic imaging, which is often characterized by empirical assignment of initial wave velocity and uniform distribution of travel time error. The effectiveness of the modified method was verified through experiments on concrete specimens with different hole sizes and numbers. The results showed that the comprehensive defect discrimination based on the coupling of sound velocity, amplitude and frequency could accurately identify hole defects in concrete, with better accuracy than single-parameter or two-parameter coupling method. The ultrasonic tomography method based on inversion initial value correction could accurately assign the initial value of wave velocity iteration and make the distribution of travel time error more consistent with the defect distribution law.The method was effective for identifying holes larger than 5 mm. -
[1] 陈军, 黄灿, 王豪. 超声有限幅度法检测混凝土孔洞缺陷[J]. 无损检测, 2016, 38(1):26-29,68. [2] 李学斌, 马林, 吕启兵, 等. 预制混凝土梁超声波声速与密实度的关系试验研究[J]. 铁道建筑, 2022, 62(4):73-76. [3] 张明华, 陈敬, 凯乐, 等. 自密实混凝土超声波声时及波幅影响因素研究[J]. 重庆建筑, 2022, 21(3):33-36. [4] HRABOVA K, HUBLOVA S, CIKRLE P, et al. Using the ultrasonic method for the defectoscopy of failures in reinforced concrete columns [J]. Solid State Phenomena, 2021, 322:203-208. [5] 赵杰, 雅菁, 尚静媛, 等. 超声检测钢板剪力墙空洞缺陷的综合分析与判断[J]. 建筑结构, 2022, 52(3):94-98. [6] JIANG B, ZHAO W, WANG W. Improved ultrasonic computerized tomography method for STS (steel tube slab) structure based on compressive sampling algorithm [J]. Applied Sciences, 2017, 7(5):432-448. [7] 杨博, 龙友明, 刘境奇, 等. 基于高分辨率Radon变换的瑞利波反演在役路基动模量[J]. 振动与冲击, 2022, 41(10):222-230,237. [8] 刘帆, 王浩全, 王兆旭. 一种改进的滤波反投影超声重建算法[J]. 国外电子测量技术, 2021, 40(9):42-48. [9] 张玉, 裴毓, 张国军, 等. 基于环形相控阵的超声CT成像系统的设计[J]. 压电与声光, 2021, 43(4):518-522. [10] 王雪峰, 陈兴稣, 王元庆. 基于联合代数迭代的非视域激光图像重建方法[J]. 应用激光, 2022, 42(3):135-140. [11] CASTELLANO A, FRADDOSIO A, PICCIONI M D, et al. Linear and nonlinear ultrasonic techniques for monitoring stress-induced damages in concrete [J]. ASME J Nondestructive Evaluation, 2021, 4(4):354-367. [12] 赵敏龙, 彭珍瑞, 张亚峰. 基于Kriging模型和无迹卡尔曼滤波的转向架构架模型修正[J]. 振动与冲击, 2022, 41(4):270-277. [13] 柯赟, 宋恩哲, 姚崇, 等. 层次离散熵及其在高压共轨喷油器故障诊断中的应用[J]. 振动与冲击, 2021, 40(2):72-80. [14] 王陶, 史晓强, 陈卫敏, 等. 考虑参数区间不确定性的子结构模态综合法[J]. 振动. 测试与诊断, 2020, 40(6):1099-1104,1230-1231. [15] 常俊杰, 吴中权, 徐洋. 基于虚拟时间反转的空气耦合超声板材腐蚀缺陷概率损伤成像[J]. 电子测量技术, 2022, 45(2):148-153. [16] NIU Z, WANG W, HUANG X, et al. Integrated assessment of concrete structure using bayesian theory and ultrasound tomography [J]. Construction and Building Materials, 2021(274):86-97. [17] TIAN P, ZHANG S, GUO L. Reconstruction Algorithm-based ultrasonic and spiral CT images in evaluating the effects of dexmedetomidine anesthesia for acute abdomen [J]. Computational and Mathematical Methods in Medicine, 2021, 2021:701-707. [18] 龙士国, 肖顺芳. 网格划分对混凝土超声波CT成像的影响[J]. 武汉大学学报(工学版), 2017, 50(5):708-713.
点击查看大图
计量
- 文章访问数: 96
- HTML全文浏览量: 19
- PDF下载量: 0
- 被引次数: 0