Bond Stress From the Rebar in the Straight Anchor Section on the Local Bearing Capacity of Concrete Under Anchoring Plates
-
摘要: 为了研究直锚段钢筋与混凝土之间的黏结作用对锚固板下混凝土局压承载力的影响,完成了30个端板钢筋混凝土拉拔试件的拉拔试验。试验用锚固板尺寸分别为50 mm×50 mm×20 mm、60 mm×60 mm×20 mm,混凝土保护层厚度c分别为84 mm和62.5 mm,混凝土强度等级介于C30~C50,拉拔钢筋直径d分别为25 mm和32 mm,试验中将其锚固长度lad分为5种类型。分析结果表明:锚固板下混凝土局压承载力Fl与混凝土轴心抗压强度fc、拉拔钢筋相对锚固长度lad/d和相对保护层厚度c/d有关;Fl随lad/d的增大而近似线性增大(较初始值增加约69%),随fc的增大而线性增大(较初始值增加约80%),随c/d的增加而减小,降幅最大可达34%。基于分析结果,拟合得到了以lad/d和c/d为自变量的锚固板下混凝土局压承载力Fl计算式。Abstract: In order to study the effect of the bond stress from the rebar in the straight anchor section on the local bearing capacity of concrete under anchoring plates, 30 pull-out tests of end-plate reinforced concrete were completed. The dimensions of the anchoing plate used in the test were 50 mm×50 mm×20 mm and 60 mm×60 mm×20 mm, the thickness of concrete protective layer c were 84 mm and 62.5 mm, the strength grade of concrete were C30, C40, and C50. The diameters of the reinforcement d were 25 mm and 32 mm and its embedded length lad was divided into 5 types in the test. The analysis results showed that the local bearing capacity of concrete Fl was related to axial compressive strength of concrete fc, the relative embedded length lad/d and the thickness of the concrete relative protective layer c/d; Fl increased approximately linearly with the increase of lad/d (about 69% from the initial value), increased linearly with fc (about 80% increase from initial value), decreased with an increase in c/d, the decreasing amplitude was up to 34%. Based on data fitting, the formula for calculating the local bearing capacity of concrete under anchoring plates with lad/d and c/d as independent variables was obtained.
-
[1] 杨健辉, 郭寰, 余建雨. 节点部位钢筋过密所带来的质量问题剖析[J]. 工程质量, 2016, 34(3):8-12. [2] 美国高强钢筋应用情况考察报告[J]. 工程建设标准化, 2013(2):1-13. [3] 澳大利亚和韩国高强钢筋应用情况考察[J]. 建筑时报, 2013(4):1-3. [4] CHUN S C, KIM D Y. Evaluation of mechanical anchorage of reinforcement by exterior beam-column joint experiments[C]//13th World Conference on Earthquake Engineering. Vancouver BC, Canada:Canadian Association for Earthquake Engineering, 2004. [5] LEE H J, YU S Y. Cyclic response of exterior beam-column joints with different anchorage methods[J]. ACI Structural Journal, 2009, 106(3):219-339. [6] CHUN S C, LEE S H, KANG T H K, et al. Mechanical anchorage in exterior beam-column joints subjected to cyclic loading[J]. ACI Structural Journal, 2007, 104(1):102-112. [7] 曹声远,杨熙坤,钮长仁. 混凝土轴心局部承压破坏及强度的试验研究[J]. 哈尔滨建筑工程学院学报,1980(1):61-73. [8] 曹声远,杨熙坤,钮长仁. 混凝土轴心局部承压变形的试验研究[J]. 哈尔滨建筑工程学院学报,1980(1):74-84. [9] 曹声远,杨熙坤. 混凝土局部承压的工作机理及强度理论[J]. 哈尔滨建筑工程学院学报,1982(3):44-53. [10] 刘永颐,光建光. 混凝土局部承压强度及破坏机理[J]. 土木工程学报,1985(2):53-65. [11] 蔡绍怀,顾维平. 混凝土标号对局部承压强度提高系数的影响[C]//混凝土结构基本理论及应用第二届学术讨论会论文集(第一卷).1990:180-186. [12] 蔡绍怀,薛立红. 高强度混凝土的局部承压强度[J]. 土木工程学报,1994(5):52-61. [13] 周威,胡海波. 预留孔道活性粉末混凝土局压性能与承载力分析[J]. 工程力学,2014,31(7):119-128. [14] MIAO T M, ZHENG W Z. Distributive relationship of anchorage force relative to reinforcement and headed bars [J/OL]. Engineering Structures, 2020:209[2023-03-19]. https://www.sciencedirect.com/science/article/abs/pii/s0141029619323776. [15] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范:GB 50010-2010[S]. 北京:中国建筑工业出版社,2010.
点击查看大图
计量
- 文章访问数: 56
- HTML全文浏览量: 7
- PDF下载量: 3
- 被引次数: 0