Optimizational Analysis on Structural Parameters and Study on Practical Deformation Analysis Methods for High-Rise Pile Cap Foundations of Offshore Wind Turbines
-
摘要: 采用SESAM软件分析当海上风电机组高桩承台基础结构的桩身直径、钢管桩壁厚和布桩半径变化时,对桩体静力性能和荷载效应的影响。结果表明:在外部荷载和环境参数一定的条件下,当桩径、壁厚和布桩半径变化时,结构的轴压、轴拉、剪力和弯矩均有不同程度的变化。基于计算数据,给出了结构的优化设计方法;通过对结构参数发生变化时泥面处竖向、水平位移和转角的规律分析,回归得到了泥面处竖向、水平位移和转角的变化曲线,并通过对不同海况下算例的验证,表明回归曲线精度良好。Abstract: The impact of diameters of piles, wall thickness of tubular steel piles and layout radii of piles for high-rise pile cap foundations of offshore wind turbines on the static performances and load effects of piles were analyzed by the SESAM software. The results indicated that: in certain conditions of external loads and environmental parameters, the changes in diameters of piles, wall thicknesses and layout radii of tube piles had different influences on the axial compression, axial tension, shear force and bending moment of the structure. Based on the calculation data, an optimized design method for the structure was proposed. By analyzing the rules of the vertical and horizontal displacement and rotation angle at the mud surface in changes of the structural parameters, the regression curves were obtained, which were verified by examples in different sea conditions and was of good accuracy.
-
[1] ARSHAD M, O’KELLY B C. Offshore wind-turbine structures:a review[J]. Proceedings of the Institution of Civil Engineers-Energy, 2013, 166(4):139-152. [2] 郭健,杨敏,王伟.海上风机高桩承台基础模态建模分析研究[J].岩土工程学报,2013,35(增刊2):1172-1175. [3] 鲁传安.桥梁群桩基础的抗震性能研究[D].上海:同济大学,2008. [4] 邵红才,吕凡任,金耀华,等.竖向荷载作用下对称双斜桩基础水平承载力模型试验研究[J].长江科学院院报,2014,31(6):65-68. [5] ESCOFFIER S,CHAZELAS J,GARNIER J.Centrifuge modelling of raked piles[J].Bulletin of Earthquake Engineering,2008,6(4):689-704. [6] GEROLYMOS N,GIANNAKOU A,ANASTASOPOULOS I, et al.Evidence of beneficial role of inclined piles:observations and summary of numerical analyses[J].Bulletin of Earthquake Engineering,2008,6(4):705-722. [7] ACHMUS M,THIEKEN K.On the behavior of piles in non-cohesive soil under combined horizontal and vertical loading[J].Acta Geotechnica,2010,5(3):199-210. [8] 李腾飞,姜娟.海上风机高桩承台基础结构及参数优化分析[J].内蒙古水利,2018(10):66-69. [9] 张俊臣,熊根,许光明.深厚淤泥质土中风电机组高桩承台基础优化设计[J].风能,2021(5):78-83. [10] CHEN Q, FU S X, ZOU Z J. Dynamic Response Analysis of the Offshore Wind Turbine Support Structure Under Extreme Conditions[C/OL].ASME 201130th International Conference on Ocean, Offshore and Arctic Engineering. 2011[2023-02-22]. https://doi.org/10.1115/OMAE2011-49094. [11] 孙明明,李昕,李炜.海上风力机高桩承台基础反应特性研究[J].太阳能学报,2020,41(7):265-273. [12] 沈晓雷,陈洪飞,王欣怡.海上风电高桩承台基础承载特性数值模拟研究[J].水力发电,2021,47(12):72-75. [13] 方华灿.海洋石油工程[M].北京:石油工业出版社,2010. [14] 李玉成,滕斌.波浪对海上建筑物的作用[M]. 3版.北京:海洋出版社,2015. [15] 陈志强.海上风力发电机桩基础波流荷载研究[D].大连:大连理工大学,2008. [16] American Petroleum Institute(API). Recommended practice for planning, designing and constructing fixed offshore platforms-working stress design: API RP 2A-WSD[S].Washington D.C.: API, 2000. [17] 国家能源局. 海上风电场工程风电机组基础设计规范:NB/T 10105—2018[S].北京:中国水利水电出版社,2018. [18] 中华人民共和国建设部. 建筑桩基技术规范:JGJ 94—2008[S]. 北京:中国建筑工业出版社,2008.
点击查看大图
计量
- 文章访问数: 372
- HTML全文浏览量: 47
- PDF下载量: 40
- 被引次数: 0