Effects of Different Gelling Compositions on Drying Shrinkage Properties of 3D Printed Cement-Based Materials
-
摘要: 为改善3D打印水泥基材料干燥收缩性能,将粉煤灰(FA)和矿粉(S)两种矿物掺和料以单掺和复掺的形式加入机制砂制备的3D打印水泥基材料中,研究不同胶凝组成对3D打印水泥基材料力学性能和干燥收缩性能的影响,并通过扫描电镜试验和压泵法测孔技术,分析其微观形貌和孔结构。试验结果表明:在单掺的情况下,粉煤灰和矿粉较低的活性抑制了材料强度的发展,其中粉煤灰在X方向的抑制效果最强,分别使28d抗压强度和抗折强度下降41%和23%。但矿物掺和料的骨架填充效应与火山灰效应可改善材料的孔隙结构,降低孔隙间的连通,减少水分消耗,抑制3D打印水泥基材料的干燥收缩;相同掺量下,粉煤灰与矿粉使总孔隙率降低了15.2%、9.8%,最可几孔径降低了43.2%、16.5%;掺量为30%粉煤灰和掺量为20%矿粉的试验组分别使材料28d干燥收缩值降低了41%和22%。复掺粉煤灰和矿粉使材料抗压强度和抗折强度分别降低27.5%和13.9%,对干燥收缩的抑制效果介于二者单掺之间,使28 d干燥收缩降低了23%~25%。Abstract: In order to improve the drying shrinkage performance of 3D printed cement-based materials, two mineral admixtures of fly ash (FA) and mineral powder (S) were added to the 3D printed cement-based materials prepared by machine-made sand in the form of single admixture and compound admixture. Scanning electron microscope and mercury intrusion porosimetry were used to research the microstructure and pore structure of 3D printed cement-based materials. The test results showed that:in the case of single addition, lower activity of fly ash and mineral powder inhibited the development of strength, and the inhibition effect of fly ash in the X, direction was the strongest, which reduced the 28 d compressive strength and flexural strength by 41% and 23%, respectively. However, the skeleton filling effect and pozzolanic effect of mineral admixtures could improve the pore structure, reduce the connectivity between pores, reduce water consumption, and inhibit the drying shrinkage of 3D printed cement-based materials. With the same content of fly ash and mineral powder, the total porosity was reduced by 15.2% and 9.8%, and the most probable pore size was reduced by 43.2% and 16.5%. Test group with 30% fly ash and 20% mineral powder reduced the 28d drying shrinkage by 41% and 22%, respectively. When fly ash and mineral powder were paired together, compressive strength and flexural strength decreased by 27.5% and 13.9%, respectively, and the inhibition effect on drying shrinkage was between that of single admixture, reduced the 28 d drying shrinkage by 23%-25%.
-
[1] XIAO J, LYU Z, DUAN Z, et al. Study on preparation and mechanical properties of 3D printed concrete with different aggregate combinations[J/OL]. Journal of Building Engineering, 2022,51[2023-02-15]. https://doi.org/10.1016/j.jobe.2022.104282. [2] BUSWELLI R A, LEAL D, JONES S Z, et al. 3D printing using concrete extrusion:a roadmap for research[J]. Cement & Concrete Research, 2018,112:37-39. [3] PANDA B, RUAN S, UNHUER C, et al. Investigation of the properties of alkali-activated slag mixes involving the use of nanoclay and nucleation seeds for 3D printing[J/OL]. Composites Part B:Engineering, 2020,186[2023-02-15]. https://doi.org/10.1016/j.compositesb.2020.107826. [4] 崔天龙, 王里, 马国伟, 等. HB-CSA与膨胀剂对3D打印混凝土收缩开裂性能的影响[J]. 材料导报, 2022, 36(2):76-82. [5] 侯东伟. 混凝土自身与干燥收缩一体化及相关问题研究[D]. 北京:清华大学, 2010. [6] 廖伟华, 陈金义. 西北大跨连续刚构施工期腹板开裂成因分析[J]. 公路, 2020, 65(11):183-188. [7] ZHANG H, XIAO J. Plastic shrinkage and cracking of 3D printed mortar with recycled sand[J/OL]. Construction and Building Materials, 2021, 302[2023-02-15]. https://doi.org/10.1016/j.conbuildmat.2021.124405. [8] MOELICH G M, KRUGER J, COMBRINCK R. Plastic shrinkage cracking in 3D printed concrete[J/OL]. Composites Part B:Engineering, 2020,200[2023-02-15]. https://doi.org/10.1016/j.compositesb.2020.108313. [9] 胡红梅, 马保国. 混凝土矿物掺合料[M]. 北京:中国电力出版社, 2016. [10] 张涛, 朱成. 水泥-硅灰/粉煤灰体系强度、收缩性能与微观结构研究[J]. 硅酸盐通报, 2022, 41(3):903-912. [11] LEE K M, LEE H K, LEE S H, et al. Autogenous shrinkage of concrete containing granulated blast-furnace slag[J]. Cement and Concrete Research, 2006, 36(7):1279-1285. [12] SHEN D, WANG W, LI Q, et al. Early-age behaviour and cracking potential of fly ash concrete under restrained condition[J].Magazine of Concrete Research, 2020, 72(5):246-261. [13] 李维红, 常西栋, 王乾, 等. 矿物掺合料对3D打印水泥基材料性能的影响[J]. 硅酸盐通报, 2020, 39(10):3101-3107,3114. [14] VOIGT T, MBELE J J, WANG K, et al. Using fly ash, clay, and fibers for simultaneous improvement of concrete green strength and consolidatability for slip-form pavement[J]. Journal of Materials in Civil Engineering, 2010, 22(2):196-206. [15] 杨钱荣, 赵宗志, 肖建庄, 等.矿物掺合料与化学外加剂对3D打印砂浆性能的影响[J]. 建筑材料学报, 2021, 24(2):412-418. [16] 中华人民共和国国家质量监督检验检验总局. 水泥胶砂流动度测定方法:GB/T 2419-2005[S]. 北京:中国标准出版社, 2005. [17] 中华人民共和国住房和城乡建设部. 建筑砂浆基本性能试验方法标准:JGJ/T 70-2009[S]. 北京:中国建筑工业出版社, 2009. [18] 赵联桢. 矿物掺合料对混凝土早期收缩与力学性能的影响[D]. 南京:南京水利科学研究院, 2010. [19] WONGKEO W, THONGSANITGARN P, CHAIPANICH A. Compressive strength and drying shrinkage of fly ash-bottom ash-silica fume multi-blended cement mortars[J]. Materials & Design, 2012, 36:655-662. [20] ZHAO Y, GONG J, ZHAO S. Experimental study on shrinkage of HPC containing fly ash and ground granulated blast-furnace slag[J]. Construction and Building Materials, 2017,155:145-153. [21] YANG T, ZHU H, ZHANG Z. Influence of fly ash on the pore structure and shrinkage characteristics of metakaolin-based geopolymer pastes and mortars[J]. Construction and Building Materials, 2017, 153:284-293. [22] 李顺凯. 水泥砂浆的干缩研究[D]. 南京:南京工业大学, 2004. [23] 吴中伟. 混凝土科学技术近期发展方向的探讨[J]. 硅酸盐学报, 1979(3):82-90. [24] 郑小青, 周泽友. 矿物掺和料与再生骨料对水泥强度和收缩性能的影响[J]. 硅酸盐通报, 2017, 36(1):191-196. [25] 曾昊, 詹培敏, 李增, 等. 矿物掺合料对水泥基材料干燥收缩影响的研究进展[J]. 硅酸盐通报, 2020, 39(9):2714-2723.
点击查看大图
计量
- 文章访问数: 75
- HTML全文浏览量: 13
- PDF下载量: 1
- 被引次数: 0