Damage Identification Method for Significant Members of Existing Latticed Shells
-
摘要: 针对既有网壳结构损伤构件位置分布难以完全测定的问题,提出了一种用于既有网壳结构显著损伤构件识别的改进残余力分解法(RFD)。基于定义的沿构件轴向投影方向上的无量纲模态变形参数,将所测得的特征向量采用RFD方法转化为一组多元线性方程组,用以定位具有显著刚度折减的构件。针对方程组可能存在无穷解的情况,利用Ritz向量的灵敏度分析和模态保证准则(MAC)进行网壳结构构件重要性判定,筛选出在当前荷载模式下对结构刚度贡献最小的构件,将其作为附加约束条件引入计算方程,使方程组具备唯一解的条件。同时建立了网壳结构模型进行计算分析,详述了RFD方法的计算过程并验证了其有效性。Abstract: For the problem that it is difficult to completely determine the damage location distribution of the existing latticed shell, a practical residual force decomposition (RFD) method was proposed to identify significantly damaged members in the existing latticed shell. In the proposed RFD method, the significant damage can be recognized corresponding to the changes of the observed eigenvector based on the non-dimensional modal deformation parameters defined in the paper along the axial projection direction of members, which can be transformed into solving a set of multivariate linear equations. To deal with the possibility of infinite solutions in the equation system, the sensitivity analysis of Ritz vectors and the Modal Assurance Criterion (MAC) were employed to assess the importance of members in latticed shell structures. The members with minimal contribution to the structural stiffness under the current loading condition were selected and introduced as additional constraint conditions in the calculation equations, ensuring the uniqueness of the solution to the equation system. A latticed shell structural model was established for computational analysis, and the calculation process of the RFD method in the paper was described in detail and its effectiveness was verified.
-
[1] AN Y, OU J. Experimental and numerical studies on model updating method of damage severity identification utilizing four cost functions[J]. Structural Control & Health Monitoring, 2013, 20(1): 107-120. [2] 阳洋,王者伟,凌园,等.基于统计矩理论和贝叶斯方法的框架结构损伤识别方法研究[J].建筑结构学报,2023,44(2):227-236. [3] 戴东利,杨汉青,杨翔,等.基于波动理论的结构损伤识别研究进展[J].地震工程学报,2022,44(5):1001-1008. [4] ESFANDIARI A, BAKHTIARI-NEJAD F, RAHAI A. Theoretical and experimental structural damage diagnosis method using natural frequencies through an improved sensitivity equation[J]. International Journal of Mechanical Sciences, 2013(70): 79-89. [5] 李书进,熊书琪,范沛然,等.考虑残差学习的深层卷积神经网络在结构损伤识别中的应用研究[J].工业建筑,2022,52(7):192-198. [6] 蔡小双,纪国宜.基于残余力向量法的桁架结构损伤识别[J].工业建筑,2013,43(增刊1):211-213,288. [7] 彭念,张永兴,陈建功.基于损伤柔度曲率矩阵的结构损伤识别新方法[J].工业建筑,2013,43(8):15-18. [8] BLACHOWSKI B, AN Y, SPENCER B F, et al. Axial strain accelerations approach for damage localization in statically determinate truss structures[J]. Computer-Aided Civil and Infrastructure Engineering, 2017, 32(4): 304-318. [9] BLACHOWSKI B, SWIERCZ A, GUTKIEWICZ P, et al. Structural damage detectability using modal and ultrasonic approaches[J]. Measurement, 2016(85): 210-221. [10] FU Y, LU Z, LIU J. Damage identification in plates using finite element model updating in time domain[J]. Journal of Sound and Vibration, 2013, 332(26): 7018-7032. [11] MUKHOPADHYAY T, DEY T K, CHOWDHURY R, et al. Structural damage identification using response surface-based multi-objective optimization: a comparative study[J]. Arabian Journal for Science and Engineering, 2015, 40(4): 1027-1044. [12] ZIMMERMAN D C, KAOUK M. Structural damage detection using a subspace rotation algorithm[C]//33rd Structures, Structural Dynamics and Materials Conference. 1992: 2341-2350. [13] ZIMMERMAN D C, KAOUK M. Structural damage detection using a minimum rank update theory[J]. Journal of Vibration and Acoustics, 1994(116): 222-231. [14] KAOUK M, ZIMMERMAN D C. Structural damage assessment using a generalized minimum rank perturbation-theory[J]. AIAA Journal, 1994, 32(4): 836-842. [15] MARES C, SURACE C. An application of genetic algorithms to identify damage in elastic structures[J]. Journal of Sound and Vibration, 1996, 195(2): 195-215. [16] RAO M A, SRINIVAS J, MURTHY B. Damage detection in vibrating bodies using genetic algorithms[J]. Computers & Structures, 2004, 82(11): 963-968. [17] MERUANE V, HEYLEN W. An hybrid real genetic algorithm to detect structural damage using modal properties[J]. Mechanical Systems and Signal Processing, 2011, 25(5): 1559-1573. [18] PERERA R, TORRES R. Structural damage detection via modal data with genetic algorithms[J]. Journal of Structural Engineering, 2006, 132(9): 1491-1501. [19] PERERA R, FANG S E, RUIZ A. Application of particle swarm optimization and genetic algorithms to multiobjective damage identification inverse problems with modelling errors[J]. Meccanica, 2010, 45(5): 723-734. [20] WEBER B, PAULTRE P. Damage identification in a truss tower by regularized model updating[J]. Journal of Structural Engineering, 2009, 136(3): 307-316. [21] KAVEH A, ZOLGHADR A. An improved CSS for damage detection of truss structures using changes in natural frequencies and mode shapes[J]. Advances in Engineering Software, 2015, 80: 93-100. [22] REN W X, DE ROECK G. Structural damage identification using modal data. II: test verification[J]. Journal of Structural Engineering, 2002, 128(1): 96-104. [23] GALVANETTO U, VIOLARIS G. Numerical investigation of a new damage detection method based on proper orthogonal decomposition[J]. Mechanical Systems and Signal Processing, 2007, 21(3): 1346-1361. [24] TOMASZEWSKA A. Influence of statistical errors on damage detection based on structural flexibility and mode shape curvature[J]. Computers & Structures, 2010, 88(3): 154-164. [25] CAO T T, ZIMMERMAN D C. Procedure to extract Ritz vectors from dynamic testing data[J]. Journal of Structural Engineering, 1999, 125(12): 1393-1400. [26] SOHN H, LAW K H. Damage diagnosis using experimental Ritz vectors[J]. Journal of Engineering Mechanics, 2001, 127(11): 1184-1193. [27] SOHN H, LAW K H. Extraction of Ritz vectors from vibration test data[J]. Mechanical Systems and Signal Processing, 2001, 15(1): 213-226. [28] TAYLOR S G, ZIMMERMAN D C. Improved experimental Ritz vector extraction with application to damage detection[J/OL]. Journal of Vibration and Acoustics, 2010, 132(1)[2023-06-06]. https://asmedigitalcollection.asme.org/vibrationacoustics/article-abstract/132/1/011012/471094/Improved-Experimental-Ritz-Vector-Extraction-With. [29] GE M, LUI E M. Structural damage identification using system dynamic properties[J]. Computers & Structures, 2005, 83(27): 2185-2196. [30] YANG Q, LIU J. Structural damage identification based on residual force vector[J]. Journal of Sound and Vibration, 2007, 305(1): 298-307. [31] YUN G J, OGORZALEK K A, DYKE S J, et al. A parameter subset selection method using residual force vector for detecting multiple damage locations[J]. Structural Control and Health Monitoring, 2010, 17(1): 48-67. [32] LUO Y, WANG L, GUO X. Threshold value method and its application in dynamic analysis of spatial latticed structures[J]. Advances in Structural Engineering, 2012, 15(12): 2215-2226. [33] LEON S J, BJÖRCK Å, GANDER W. Gram-Schmidt orthogonalization: 100 years and more[J]. Numerical Linear Algebra with Applications, 2013, 20(3): 492-532. [34] PASTOR M, BINDA M, HARČARIK T. Modal assurance criterion[J]. Procedia Engineering, 2012(48): 543-548. [35] 王磊. 空间网格结构振型遴选阈值法理论研究[D].上海: 同济大学, 2011.
点击查看大图
计量
- 文章访问数: 86
- HTML全文浏览量: 13
- PDF下载量: 10
- 被引次数: 0