中国科技核心期刊
RCCSE中国核心学术期刊
JST China收录期刊
中国建筑科学领域高质量科技期刊分级目录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

核电站安全壳密封性能测试研究进展综述

王友刚 孙运轮 马鹏举 解玉建 吴震 贺敏 侯钢领

王友刚, 孙运轮, 马鹏举, 解玉建, 吴震, 贺敏, 侯钢领. 核电站安全壳密封性能测试研究进展综述[J]. 工业建筑, 2024, 54(5): 33-42. doi: 10.13204/j.gyjzG23010608
引用本文: 王友刚, 孙运轮, 马鹏举, 解玉建, 吴震, 贺敏, 侯钢领. 核电站安全壳密封性能测试研究进展综述[J]. 工业建筑, 2024, 54(5): 33-42. doi: 10.13204/j.gyjzG23010608
WANG Yougang, SUN Yunlun, MA Pengju, XIE Yujian, WU Zhen, HE Min, HOU Gangling. A Review of Recent Advances in Containment Leakage Testing for Nuclear Power Plants[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(5): 33-42. doi: 10.13204/j.gyjzG23010608
Citation: WANG Yougang, SUN Yunlun, MA Pengju, XIE Yujian, WU Zhen, HE Min, HOU Gangling. A Review of Recent Advances in Containment Leakage Testing for Nuclear Power Plants[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(5): 33-42. doi: 10.13204/j.gyjzG23010608

核电站安全壳密封性能测试研究进展综述

doi: 10.13204/j.gyjzG23010608
基金项目: 

中核集团集中研发项目(ZHJTJZYFWD2020)

中核能源科技有限公司项目(KY61600210007)

烟台市校地融合发展项目(22MZ03CD012)。

详细信息
    作者简介:

    王友刚,硕士,注册岩土工程师,高级工程师,主要从事核工程结构和复杂组合结构设计研究,ygwang@chinergy.com.cn。

    通讯作者:

    孙运轮,硕士,一级注册结构工程师,研究员级高级工程师,主要从事核工程结构和复杂组合结构设计研究,ylsun@chinergy.com.cn。

A Review of Recent Advances in Containment Leakage Testing for Nuclear Power Plants

  • 摘要: 安全壳是核电站发生事故后,有效防止放射性物质泄漏的最后一道屏障,也是保障核电站安全稳定运行的重要设施之一,因此其密封性能至关重要。在核电站调试和运行期间均需要开展核电站安全壳密封性试验,以测试其密封性能。介绍了国内外关于核电站安全壳密封性试验的最新研究成果。从安全壳整体密封性测试、局部密封性测试以及涉及密封性测试的其他方面三个角度总结了相关研究进展。对安全壳整体密封性试验和局部密封性试验的不同方法进行了比较,并总结了方法特点。此外,对安全壳密封性测试相关的部件优化、泄漏率预测和数值模拟与软件开发进行了总结,还分析了目前安全壳密封性测试研究存在的不足,探讨了安全壳密封性测试未来发展的方向,可为安全壳密封性研究及其发展应用提供相关借鉴。
  • [1] 杜祥琬, 叶奇蓁, 徐銤, 等. 核能技术方向研究及发展路线图[J]. 中国工程科学, 2018, 20(3): 17-24.
    [2] 张馨玉, 马荣芳, 李晓洁. 国际核能产业发展综述[C]//中国核科学技术进展报告(第七卷)——中国核学会2021年学术年会论文集第8册(核情报分卷). 2021: 232-239.
    [3] World Nuclear Association. World nuclear association. world nuclear performance report 2020[R]. England: World Nuclear Association, 2020.
    [4] 徐銤, 张廉, 陆曙东. 美国三里岛核电站事故与我们的一些看法[J]. 核动力工程, 1980(1): 54-58,47.
    [5] 李白. 汲取历史教训推动我国核电产业安全高效发展[J]. 上海人大月刊, 2015(11): 52-53.
    [6] 胡遵素. 切尔诺贝利事故及其影响与教训[J]. 辐射防护, 1994(5): 321-335.
    [7] 邹树梁, 邹旸. 日本福岛第一核电站核事故对中国核电发展的影响与启示[J]. 南华大学学报(社会科学版), 2011, 12(2): 1-5.
    [8] 黄海涛, 杨炯, 马先宏. 美国核电厂安全壳整体密封性试验[J]. 能源与节能, 2016(5): 85-87,100.
    [9] 周文权, 曲小朋, 孟凡彬. 核电站安全壳整体密封性试验方法[J]. 核动力工程, 1997, 18(2): 58-62.
    [10] 核工业标准化研究所.核电厂安全壳密封性试验:NB/T 20018—2010[S].北京:原子能出版社,2010.
    [11] 顾军, 侍今奇, 范福平. 秦山三期重水堆核电工程安全壳结构强度验证试验和整体密封性试验[J]. 中国核科技报告, 2004(2): 110-124.
    [12] 梁永义, 秦荣大, 金承华. 秦山核电厂安全壳密封性能试验的仪表测量系统[J]. 核科学与工程, 1992, 12(3): 206-212

    ,5.
    [13] 嵇永臣, 魏建军, 管玉峰. WWER机组安全壳密封与强度试验技术[J]. 能源技术与管理, 2019, 44(5): 132-135.
    [14] American Nuclear Society Standards Committee Working Group. Containment system leakage testing requirement: ANSI/ANS-56.8-2002(R2011) [S]. La Grange Park: American Nuclear Society, 2011.
    [15] 陈友琼, 杨枫. 核电站安全壳整体密封性试验[J]. 电工技术, 2022(4): 125-128.
    [16] 李晓庚. M310堆型核电站运行期间安全壳查漏策略[J]. 产业与科技论坛, 2019, 18(17): 62-63.
    [17] 张岩. 田湾核电站安全壳密封试验[J]. 黑龙江科技信息, 2008(6): 37-38.
    [18] 杜宇, 刘勇, 丁小川. 福清核电厂1、2号机组安全壳整体泄漏率试验充压和降压速率优化的分析和研究[J]. 核科学与工程, 2017, 37(2): 199-202.
    [19] 方兴, 翁文庆, 叶水祥, 等. CPR1000延长ILRT周期研究[J]. 核动力工程, 2021, 42(4): 222-227.
    [20] 詹淑文, 常华健, 蒋坚毅, 等. 巴基斯坦恰希玛核电站安全壳整体密封性试验[J]. 环境工程, 2006, 24(4): 60-62

    ,65,5.
    [21] 王国栋. 恰希玛核电C3机组安全壳整体密封性试验概述及优化[J]. 能源与节能, 2020(7): 40-42,151.
    [22] SAKABA N, IIGAKI K, KONDO M, et al. Leak-tightness characteristics concerning the containment structures of the HTTR[J]. Nuclear Engineering and Design, 2004, 233(1/2/3): 135-145.
    [23] KIMA H C, PAK S K, LEE J S, et al. Thermal stratification during atmospheric stabilization in a containment leakage rate test[J]. Safety (KINS), 2018, 5(6): 7-8.
    [24] KIM T H. Some insights from containment Integrated leakage-rate test experience[C]//Transactions of the Korean Nuclear Society Spring Meeting. Jeju, Korea: 2014.
    [25] KIM A R, JANG D J, CHUNG K Y. Review of errors of containment Integrated leak rate test for nuclear power plants[C]//Transactions of the Korean Nuclear Society Spring Meeting.Jeju, Korea: 2018.
    [26] 沈东明, 蔡建涛, 何锐, 等. 基于统计软件R的安全壳泄漏率试验数据有效性分析[J]. 核动力工程, 2020, 41(5): 99-103.
    [27] MA T, LM B. A proposed method for the determination of leakage rate for a reactor containment vessel[J]. Nuclear Technology, 2004, 145(3): 319-323.
    [28] SHEN D M, Li S C, He R, et al. Error and uncertainty propagation analysis on the model of containment leakagerate[J/OL]. Available at SSRN 4121974,2022[2022-05-18].https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4121974.
    [29] 吴希盼, 李志勇. 核电厂安全壳试验前进行湿度调节的分析[J]. 大众标准化, 2022(11): 154-156.
    [30] 于泾纬, 左涛. AP1000安全壳整体泄漏率试验探讨[J]. 中国高新技术企业, 2015(16): 38-40.
    [31] 褚英杰, 欧阳钦. 安全壳整体泄漏率计算方法的比较分析[J]. 核动力工程, 2010, 31(6): 33-37.
    [32] 李建伟. 核电站安全壳性能试验设计[J]. 机电信息, 2011(6): 20-22.
    [33] 田科浪, 田尧. 浅谈理想气体状态方程在密封性评价中的应用[J]. 科技视界, 2019(18): 62-63.
    [34] CHO C S, CHUNG W H, KUO S Y. Measurement and analysis of the leak tightness of reactor containment vessels: experiences and results[J]. Nuclear Engineering and Design, 2015, 292: 112-122.
    [35] ZEMANN M, HERRMANN N, DEHN F. Leckageverhalten von gerissenem Beton-eine mehrskalige Betrachtung[J]. Beton-und Stahlbetonbau, 2019, 114(12): 929-937.
    [36] GELAIN T. An original method to assess leakage through cracked reinforced concrete walls[J]. Engineering Structures, 2012, 38: 11-20.
    [37] HERRMANN N, MVLLER H S, NIKLASCH C, et al. Leakage behaviour of a pre-streed concrete coatainment under air and steam loads in the paec-1450 experiment[C]// 23rd Conference on Structural Mechanics in Reactor Technology: Division I. Manchester, United Kingdom: 2015.
    [38] COURTOIS A, JOHNSTON M, MORTIMER R. Containment pre-operational tests in -service inspection and integrated leak rate tests for pwr: a comparison between sizewell b and the edf french fleet[C]//23rd Conference on Structural Mechanics in Reactor Technology: Division V. Manchester, United Kingdom: 2015.
    [39] NARAYANAM S P, KUMAR A, SEN S, et al. Experimental measurements and theoretical simulation of sodium combustion aerosol leakage through capillaries[J/OL]. Progress in Nuclear Energy, 2020, 118[2020-01-01].https://doi.org/10.1016/j.pnucene.2019.103111.
    [40] HAN W E. Filtering of particulates by cracks in containment barriers[J]. Fusion Engineering and Design, 2007, 82(15-24): 2829-2837.
    [41] 李函泽. 安全壳钢衬里微通道气体泄漏机理研究[D]. 哈尔滨:哈尔滨工程大学, 2023.
    [42] YANG H, YAO X F, WANG S, et al. Simultaneous determination of gas leakage location and leakage rate based on local temperature gradient[J]. Measurement, 2019, 133: 233-240.
    [43] 高忠勇, 戴长山, 吴文宏. 秦山核电厂安全壳系统B、C类密封性试验[J]. 核科学与工程, 1992, 12(3): 200-205

    ,5.
    [44] 江邦治. 反应堆安全壳的局部泄漏率试验[J]. 核动力工程, 1991, 12(4): 36-40.
    [45] 徐森. 核电站安全壳隔离阀密封性试验研究现状[J]. 科技创新导报, 2014(3): 82.
    [46] 郭裕丰. 安全壳隔离阀密封性试验方法分析[J]. 电工技术, 2021(17): 107-108,124.
    [47] 尤坤坤, 杨炯, 黄海涛, 等.局部密封性试验集成系统在密封性试验中的应用[J]. 中国设备工程, 2019(18): 178-179.
    [48]
    [49] 郭裕丰. 安全壳隔离阀密封性试验优化方法应用与分析[J]. 电工技术, 2022(9): 172-173,176.
    [50] 彭巧云, 樊武. 安全壳隔离阀密封性试验问题研究[J].科技创新与应用,2018(30):76-77.
    [51] 惠爽爽, 朱峰. 核电厂安全壳隔离阀密封性检测与分析[J]. 科技创新与应用, 2013(11): 64-65.
    [52] DELGAIZO T J. Containment leakage rate testing[R]. Philadelphia: Franklin Research Center, 1982.
    [53] 李尚科. 核电厂反应堆功率运行工况下安全壳隔离阀泄漏对安全壳密封性影响的评价方法研究[J]. 科技创新与应用, 2019(15): 125-127.
    [54] 田齐伟, 刘勇, 尚臣, 等. "华龙一号"安全壳隔离阀的阀腔打压密封性试验方法[J]. 中国核电, 2018, 11(4): 452-455.
    [55] 刘刚, 黄冬艳, 方文治, 等. 核电厂安全壳电气贯穿件泄漏率计算分析[J]. 发电设备, 2018, 32(1): 32-34

    ,49.
    [56] 彭翠玲, 张周红, 向文元. EPR安全壳高能管道贯穿件应力分析[J]. 核科学与工程, 2012, 32(2): 180-185.
    [57] 陈前昆. 极限载荷作用下机械贯穿件应变及密封性能研究[J]. 中国测试, 2020, 46(1): 160-168.
    [58] 张勇, 张钊, 杨自军,等. 高低压安注系统机械贯穿件密封性定期试验优化研究[J]. 核科学与工程, 2019, 39(6): 958-965.
    [59] 张冰, 付小军, 魏建军, 等. 田湾核电站安全壳机械贯穿件隔离阀密封性试验[J]. 能源技术与管理, 2014, 39(2): 119-121.
    [60] 宋彦霖, 梁招瑞. CPR1000机组电缆贯穿件实用验收准则计算[J]. 内蒙古科技与经济, 2019(7): 103-104.
    [61] 李军格, 秦传洲, 罗正华. 机械密封式电缆贯穿件研制[J]. 价值工程,2012, 31(1): 31-32.
    [62] 안준태,이경철,이용범. 초저온 버터플라이 밸브용 탄성 메탈실의 누설방지에 관한 연구[J]. 대한기계학회 논문 집 A권,2011,35(6):643-649.
    [63] HIRATA O,NAKAJIMA A,OKADA K,et al.Study on seal performance of globe valve with conical seat[J]. Transactions of the Japan Society of Mechanical, 1995, 61(584): 1618-1625.
    [64] YUSOF N S B, MOHD R A S, ARIFFIN M K A, et al. Computational analysis of the groove effect to reduce the cavitation in ball valves[J]. Applied Mechanics and Materials, 2014, 629: 414-419.
    [65] TOMESCU G, IAŞNICU I. Finite element analysis of ball valves[J]. Scientific Bulletin of Valahia University Materials & Mechanics, 2015, 4(5):1220-1224.
    [66] DAMERON R A, RASHID Y R, TANG H T. Leak area and leakage rate prediction for probabilistic risk assessment of concrete containments under severe core conditions[J]. Nuclear Engineering and Design, 1995, 156(1/2): 173-179.
    [67] ROSSAT D, BAROTH J, BRIFFAUT M, et al. Bayesian updating for nuclear containment buildings using both mechanical and hydraulic monitoring data[J/OL]. Engineering Structures, 2022, 262[2022-07-01].https://doi.org/10.1016/j.engstruct.2022.114294.
    [68] ROSSAT D, BOUHJITI D E M, BAROTH J, et al. A Bayesian strategy for forecasting the leakage rate of concrete containment buildings-Application to nuclear containment buildings[J/OL]. Nuclear Engineering and Design, 2021, 378[2021-07-01].https://doi.org/10.1016/j.nucengdes.2021.111184.
    [69] ASALI M, CAPRA B, MAZARS J, et al. Numerical strategy for forecasting the leakage rate of inner containments in double-wall nuclear reactor buildings[J]. Journal of Advanced Concrete Technology, 2016, 14(8): 408-420.
    [70] WANG H, LIU J, XIE G, et al. A method of containment leakage rate estimation based on convolution neural network[J/OL]. Frontiers in Energy Research, 2021, 9[2021-03-05].https://doi.org/10.3389/fenrg.2021.637283.
    [71] 黄晓明, 李骏, 许国良, 等. 反应堆安全壳密封结构泄漏机理与预测模型的研究[J].核动力工程, 2016, 37(3): 116-121.
    [72] CHARPIN L, NIEPCERON J, CORBIN M, et al. Ageing and air leakage assessment of a nuclear reactor containment mock-up: VERCORS 2nd benchmark[J/OL]. Nuclear Engineering and Design, 2021, 377[2021-06-01].https://doi.org/10.1016/j.nucengdes.2021.111136.
    [73] ZHENG Y, HU D, DAI Y. Simulation of the airborne radioactive substance distribution and monitoring of coolant leakage in a typical Nuclear Reactor Containment[J]. Annals of Nuclear Energy, 2016, 87: 462-470.
    [74] DAVIS J A, STEWART M. Predicting globe control valve performance—part II: experimental verification[J]. Journal of Fluids Engineering, 2002, 124(3): 778-783.
    [75] DAVIS J A, STEWART M. Predicting globe control valve performance—part I: CFD modeling[J]. Journal of Fluids Engineering, 2002, 124(3): 772-777.
    [76] MISHRA S, THANGAMANI I, SINGH R K. Containment leakage characterization with BARCOM test results for design and over pressure conditions[J]. Nuclear Engineering and Design, 2016, 301: 245-254.
    [77] ISHIMOTO J, SATO T, COMBESCURE A. Computational approach for hydrogen leakage with crack propagation of pressure vessel wall using coupled particle and Euler method[J]. International Journal of Hydrogen Energy, 2017, 42(15): 10656-10682.
    [78] KIM J, JUNG E, KANG S. Large eddy simulation of hydrogen dispersion from leakage in a nuclear containment model[J]. International Journal of Hydrogen Energy, 2015, 40(35): 11762-11770.
    [79] KIM H C, PAK S K, LEE J S, et al. Validation of the MELCOR input model for a CANDU PHWR containment analysis by benchmarking against integrated leakage rate tests[J]. Nuclear Engineering and Design, 2018, 340: 201-218.
    [80] 高凡. 核电站安全壳密封性试验系统搭建[J]. 中国核电, 2020, 13(3): 307-313.
    [81] 尤坤坤, 黄海涛, 刘硕, 等. 安全壳整体密封性试验数据分析软件的开发[J]. 电子设计工程, 2021, 29(24): 184-188

    ,193.
  • 加载中
计量
  • 文章访问数:  117
  • HTML全文浏览量:  13
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-06
  • 网络出版日期:  2024-06-22

目录

    /

    返回文章
    返回