Nonlinear Analysis on Shear Performance of Twin I-Steel Reinforced Concrete Transfer Beams
-
摘要: 为探讨型钢混凝土在地铁车站转换梁的工程应用,在双工字钢型钢混凝土转换梁试件受剪试验研究的基础上,采用ABAQUS软件建立了转换梁的有限元模型,并对转换梁的抗剪性能进行了非线性分析,获取了转换梁的应力云图和荷载-位移骨架曲线;将转换梁的计算结果与试验结果进行比较,验证该转换梁有限元模型的合理性,进一步分析了设计参数对该转换梁抗剪性能的影响规律。研究表明:转换梁在受力过程中经历初裂、裂缝开展、破坏三个阶段,最终呈现出典型的剪切破坏特征;与传统钢筋混凝土转换梁相比,双工字钢型钢混凝土转换梁具有较高的承载能力和良好的延性;随着剪跨比的增大,转换梁的承载能力降低,但延性略有增强;增大型钢配钢率可显著提高转换梁的承载力和变形能力;另外,提高钢材和混凝土的材料强度,对于转换梁的抗剪承载力是有利的。Abstract: To discuss the engineering application of steel reinforced concrete in the transfer beam of subway station, based on the shear performance tests on the specimens of twin I-steel reinforced concrete transfer beams, the finite element model of the transfer beams were established by using ABAQUS software in the study, and the shear performance of transfer beams were analyzed nonlinearly. The stress nephogram and load-displacement curves of transfer beams ware obtained. The calculation results of transfer beams were compared with the test results, so as to verify the rationality on the finite element model of transfer beams, and the influence of design parameters on the shear performance of transfer beams was also analyzed. The research showed that the transfer beams went though three stages of the initial crack, crack development and failure, and finally presented typical shear failure characteristics. Compared with the traditional reinforced concrete transfer beams, the twinle I-steel reinforced concrete transfer beams had higher bearing capacity and good ductility. With the increase of shear-span ratio, the bearing capacity of transfer beams decreased, but the ductility increased slightly. The bearing capacity and deformation capacity of transfer beams could be significantly improved by increasing the steel ratio of profile steel. In addition, improving the material strength of steel and concrete was beneficial to the shear bearing capacity of transfer beams.
-
[1] 蔡德强.广州南站桥建合建结构设计综述[J].铁道标准设计, 2015, 59(6):164-168. [2] 方迎利.高架桥与地铁结构结合设计初探[J].中国建设信息, 2011(11):49-51. [3] 聂建国,余志武.钢-混凝土组合梁在我国的研究及应用[J].土木工程学报, 1999, 32(2):3-8. [4] 王卫永,杨启波,梁展硕,等.钢桁架-混凝土组合剪力墙与钢连梁连接节点的抗震性能分析[J].工业建筑, 2022, 52(11):39-48. [5] 陈宗平,王妮,钟铭,等.型钢混凝土异形柱正截面承载力试验及有限元分析[J].建筑结构学报, 2013, 34(10):108-119. [6] 梁兴文,马恺泽,李菲菲,等.型钢高强混凝土剪力墙抗震性能试验研究[J].建筑结构学报, 2011, 32(6):68-75. [7] 王博.地铁车站型钢混凝土承台转换梁受剪性能研究[J].铁道工程学报, 2022, 39(4):71-76. [8] 聂建国,王宇航. ABAQUS中混凝土本构模型用于模拟结构静力行为的比较研究[J].工程力学, 2013, 30(4):59-67. [9] 李祚华,李安,滕军.基于能量的混凝土单轴受压塑性损伤本构模型[J].土木工程学报, 2012, 45(增刊2):182-186. [10] 中华人民共和国住房和城乡建设部.混凝土结构设计规范:GB 50010-2010[S].北京:中国建筑工业出版社, 2010. [11] OTTOSEN N S. A failure criterion for concrete[J]. Journal of Engineering Mechanics, 1977, 103(4):527-535. [12] 石永久,王萌,王元清.结构钢材循环荷载下的本构模型研究[J].工程力学, 2012, 29(9):92-98,105. [13] ESMAEILY A, XIAO Y. Behavior of reinforced concrete columns under variable axial loads:analysis[J]. ACI Structural Journal, 2005, 102(5):736-744. [14] 梁玮.区域约束型钢混凝土组合连梁抗震性能数值模拟研究[D].昆明:云南大学, 2017. [15] 刘威.钢管混凝土局部受压时的工作机理研究[D].福州:福州大学, 2005.
点击查看大图
计量
- 文章访问数: 61
- HTML全文浏览量: 10
- PDF下载量: 0
- 被引次数: 0