Experimental Research on Fracture Properties of Mixed Mode Ⅰ-Ⅱ Concrete-Epoxy Mortar Interface
-
摘要: 为研究混凝土强度和界面粗糙度对混凝土-环氧砂浆界面Ⅰ-Ⅱ型复合裂缝扩展和断裂性能的影响,对15个试件进行四点剪切试验,采用数字图像相关(DIC)技术获得试件表面位移场和应变场。基于线弹性断裂理论和试验测得的Ⅰ型裂缝起裂韧度,计算断裂能、变形系数和裂缝尖端Ⅰ型和Ⅱ型应力强度因子。研究结果表明:试件均沿着界面发生典型的准脆性破坏;通过提高混凝土强度可以显著增强界面的断裂性能,但对裂缝尖端处Ⅰ型和Ⅱ型应力强度因子比重的影响较小;试件断裂性能、裂缝尖端应力场和破坏角与界面粗糙度有较大的相关性,当灌砂平均深度h从0 mm增大到0.31 mm和0.97 mm时,断裂能Gu分别提高了16.1%和66.9%,变形系数Nu分别提高了5.4%和27.6%,Ⅰ型、Ⅱ型应力强度因子比值分别下降了11.96%和39.7%,破坏角分别增大了11.9%和37.8%。Abstract: In order to analyze the effects of concrete strength and interface roughness on the crack propagation and fracture properties of mixed mode Ⅰ-Ⅱ concrete-epoxy mortar interface, four-point shear tests were conducted on 15 specimens, and the displacement and strain fields of the specimens were obtained by digital image correlation (DIC) technology. The fracture energy, ductility index and the stress intensity factors of mode Ⅰ and mode Ⅱ at the crack tip were calculated based on the linear-elastic fracture mechanics theory and fracture initiation toughness of mode Ⅰ measured by tests. The test results showed that the crack propagated along the interface, which belonged typical quasi-brittle failure. The fracture performance of the interface could be significantly enhanced through increasing the concrete strength, however, there was little effect of the concrete strength on the ratio of the stress intensity factors of mode Ⅰ and mode Ⅱ. The fracture performance, stress field at the crack tip, and failure angle of the specimen was relevant to the interface roughness. As increased from 0 mm to 0.31 mm, 0.97 mm, fracture energy Gu increased by 16.1% and 66.9%, ductility index Gu increased by 5.4% and 27.6% respectively, the ratio of the stress intensity factors of mode Ⅰ and mode Ⅱ decreased by 11.96% and 39.7%, and the failure angle increased by 11.9% and 37.8%, respectively.
-
Key words:
- concrete /
- epoxy mortar /
- roughness /
- fracture performance /
- stress intensity factors
-
[1] HÄLLMARK R, WHITE H, COLLIN P. Prefabricated bridge construction across Europe and America[J]. Practice Periodical on Structural Design and Construction, 2012, 17(3):82-92. [2] JURKIEWIEZ B, MEAUD C, MICHEL L. Non linear behaviour of steel-concrete epoxy bonded composite beams[J]. Journal of Constructional Steel Research, 2011, 67(3):389-397. [3] CAI L, LIU Q, GUO R. Study on the shear behavior of RC beams strengthened by CFRP grid with epoxy mortar[J/OL]. Composite Structures, 2021, 275(5).[2021-07-31]. DOI: https://doi.org/10.1016/j.compstruct.2021.114419. [4] LARBI A S, FERRIER E, JURKIEWIEZ B, et al. Static behaviour of steel concrete beam connected by bonding[J]. Engineering structures, 2007, 29(6):1034-1042. [5] 吴京, 王向东, 朱小婷. 复合型裂缝应力强度因子与能量释放率的关系[J]. 济南大学学报(自然科学版), 2014, 28(5):425-428. [6] 王海超, 高义龙, 安雪晖, 等. 自密实堆石混凝土Ⅰ-Ⅱ复合型断裂性能及缝高比影响规律的研究[J]. 混凝土, 2013(7):7-10. [7] 胡少伟, 范向前, 陆俊. 强度等级对混凝土双K断裂参数的影响[J]. 水电能源科学, 2012, 30(9):77-81. [8] 张新慧. 多种因素对碾压混凝土双K断裂参数影响的试验研究[D]. 阜新:辽宁工业大学, 2019. [9] DONG W, WU Z, ZHOU X. Fracture mechanisms of rock-concrete interface:Experimental and numerical[J/OL]. Journal of Engineering Mechanics ASCE, 2016, 142(7)[2016-03-21].https://10.1061/(ASCE)EM.1943-7889.0001099. [10] 荣华, 王玉珏, 赵馨怡, 等. 不同粗糙度岩石-混凝土界面断裂特性研究[J]. 工程力学, 2019, 36(10):96-103. [11] 王晓伟,王晓婷,卿龙邦.定向钢纤维水泥基材料Ⅰ-Ⅱ复合型断裂性能研究[J].硅酸盐通报,2018,37(10):3147-3153. [12] ZHAO W, JIANG Y, YU Y, et al. Use of digital image correlation to confirm the enhancement of concrete-epoxy resin mortar adhesion through surface precoating treatment[J/OL]. Construction and Building Materials, 2021, 295.[2021-03-23].https:/doi.org/10.1016/j.conbuildmat.2021.123512. [13] 蒋宇翔. 混凝土-环氧树脂砂浆界面破坏试验研究[D]. 汕头:汕头大学, 2020. [14] 中华人民共和国住房和城乡建设部.普通混凝土配合比设计规程:JGJ 55-2011[S]. 北京:中国建筑工业出版社, 2011. [15] 中华人民共和国住房和城乡建设部.环氧树脂砂浆技术规程:DL/T 5193-2021[S]. 北京:中国电力出版社, 2021. [16] 尚守平, 余德军, 张瑞文. 被加固混凝土构件表面粗糙度评定[J]. 建筑结构学报, 2010, 14(10):120-124. [17] JENG Y S, SHAH S P. Mixed-mode fracture of concrete[J]. International Journal of Fracture, 1988, 38(2):123-142. [18] WATANABE K, SHIDA S, OHTA M. Evaluation of end-check propagation based on mode I fracture toughness of sugi (Cryptomeria Japonica)[J]. Journal of Wood Science, 2011, 57(5):371-376. [19] 陆毅中. 工程断裂力学[M]. 西安:西安交通大学出版社, 2003. [20] 范天佑. 断裂理论基础[M]. 北京:科学出版社, 2003. [21] 何庆芝, 郦正能. 工程断裂力学[M]. 北京:北京航空航天大学出版社, 1993. [22] TADA H, PARIS P C, IRWIN G R. The stress analysis of cracks handbook[M]. New York:ASME, 2000. [23] CHIAIA B, VAN MIER J G M, VERVUURT A. Crack growth mechanisms in four different concretes:microscopic observations and fractal analysis[J]. Cement and Concrete Research, 1998, 28(1):103-114.
点击查看大图
计量
- 文章访问数: 120
- HTML全文浏览量: 13
- PDF下载量: 4
- 被引次数: 0