Research on the Detection Method of Hollowing and Missing for Building Exterior Walls Based on Visible and Infrared Image Fusion
-
摘要: 建筑外墙空鼓与脱落的识别对于确保城市老旧建筑物周围公共安全至关重要。传统的人工原位检测方法需要耗费大量人力物力且存在一定的安全风险,此外识别结果也会受到专业人员的工作经验和工作状态等主观因素的影响。近年来,采用无人机进行图像采集并通过人工智能模型对建筑外墙缺陷进行识别的方法逐渐流行开来。然而,目前对于缺陷检测的研究仅针对单一模态的可见光图像或者红外图像,往往只能对某一缺陷进行检测,且没有考虑缺陷之间的转换关系。针对这一问题,通过融合建筑外墙的可见光和红外图像,结合两种模态的图像信息,并通过不同深度的UNet和Res-UNet模型对融合后图像进行建筑外墙缺陷识别,比较了不同深度模型的识别效果。试验结果表明,深度为4的Res-UNet模型对建筑外墙的空鼓和脱落具有很好的识别效果。
-
关键词:
- 多模态融合 /
- 可见光和红外图像融合 /
- 外墙缺陷识别 /
- 深度学习
Abstract: The detection of hollowing and missing of building exterior walls is crucial to ensure the public safety around aging buildings in cities. The traditional artificial in-situ detection methods are time- and labor-consuming with safety risks. In addition, the detection results will also be affected by subjective factors such as professional experience and working status. The method of image acquisition by UAV and detection of building exterior wall defects by artificial intelligence model has become popular. However, the current research on defect detection only focuses on visible images or infrared images of a single modality, and only detect a certain defect without considering the mutual conversion between defects. To address this issue, this research combined the visible and infrared images of the building exterior wall, considered the image information from two modalities, and compared the UNet and Res-UNet models of different depths to identify the building exterior wall defects in the fused images. The experimental results showed that the Res-UNet model with a depth of 4 performed excellent on the hollowing and missing of the building exterior wall. -
[1] TALAB A M A, HUANG Z, XI F, et al. Detection crack in image using Otsu method and multiple filtering in image processing techniques[J]. Optik, 2016, 127(3): 1030-1033. [2] 周建. 公路隧道裂缝检测系统的研究与设计[D]. 西安:西安建筑科技大学, 2016. [3] ABDEL-QADER I, ABUDAYYEH O, KELLY M E. Analysis of edge-detection techniques for crack detection in bridges[J]. Journal of Computing in Civil Engineering, 2003, 17(4): 255-263. [4] 徐为驰, 张磊, 张创, 等. 基于图像的路面病害检测方法研究[J]. 公路交通科技(应用技术版), 2018, 14(2): 157-161. [5] 沈照庆, 彭余华, 舒宁. 一种基于SVM的路面影像损伤跨尺度识别方法[J]. 武汉大学学报(信息科学版), 2013, 38(8): 993-997. [6] 瞿子易, 周文, 罗鑫, 等. 基于粒子群和支持向量机的裂缝识别[J]. 石油与天然气地质, 2009, 30(6): 786-792. [7] SALEEM M, GUTIERREZ H. Using artificial neural network and non-destructive test for crack detection in concrete surrounding the embedded steel reinforcement[J]. Structural Concrete, 2021, 22(5): 2849-2867. [8] YOO H S, KIM Y S. Development of a crack recognition algorithm from non-routed pavement images using artificial neural network and binary logistic regression[J]. KSCE Journal of Civil Engineering, 2016, 20(4): 1151-1162. [9] CHA Y J, CHOI W, BÜYÜKÖZTÜRK O. Deep learning-based crack damage detection using convolutional neural networks[J]. Computer-Aided Civil and Infrastructure Engineering, 2017, 32(5): 361-378. [10] 王森, 伍星, 张印辉, 等. 基于深度学习的全卷积网络图像裂纹检测[J]. 计算机辅助设计与图形学学报, 2018, 30(5): 859-867. [11] YANG X, LI H, YU Y, et al. Automatic pixel-level crack detection and measurement using fully convolutional network[J]. Computer-Aided Civil and Infrastructure Engineering, 2018, 33(12): 1090-1109. [12] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015. Springer, Cham: 2015: 234-241. [13] LIU Z, CAO Y, WANG Y, et al. Computer vision-based concrete crack detection using U-net fully convolutional networks[J]. Automation in Construction, 2019, 104: 129-139. [14] CHENG J, XIONG W, CHEN W, et al. Pixel-level crack detection using U-Net[C]//TENCON 2018-2018 IEEE Region 10 Conference. 2018: 462-466. [15] 戴景民, 汪子君. 红外热成像无损检测技术及其应用现状[J]. 自动化技术与应用, 2007(1): 1-7. [16] CHUN P J, HAYASHI S. Development of a concrete floating and delamination detection system using infrared thermography[J]. IEEE/ASME Transactions on Mechatronics, 2021, 26(6): 2835-2844. [17] JANKǓ M, BŘEZINA I, GROšEK J. Use of infrared thermography to detect defects on concrete bridges[J]. Procedia Engineering, 2017, 190: 62-69. [18] FOX M, COLEY D, GOODHEW S, et al. Time-lapse thermography for building defect detection[J]. Energy and Buildings, 2015, 92: 95-106. [19] TANAKA H, TOTTORI S, NIHEI T. Detection of concrete spalling using active infrared thermography[J]. Quarterly Report of RTRI, 2006, 47(3): 138-144. [20] 张淑仪. 超声红外热像技术及其在无损评价中的应用[J]. 应用声学, 2004(5): 1-6. [21] 李国华, 吴立新, 吴淼, 等. 红外热像技术及其应用的研究进展[J]. 红外与激光工程, 2004(3): 227-230. [22] 郭伟, 董丽虹, 徐滨士, 等. 主动红外热像无损检测技术的研究现状与进展[J]. 无损检测, 2016, 38(4): 58-66.
点击查看大图
计量
- 文章访问数: 90
- HTML全文浏览量: 13
- PDF下载量: 3
- 被引次数: 0