Effect of Sulfate Freeze-Thaw on Mechanical Properties of Self-Compacting Recycled Coarse Aggregate Concrete
-
摘要: 采用快速冻融循环法研究再生粗骨料(RCA)替代率、冻融环境及冻融循环次数对自密实再生粗骨料混凝土(SCRCAC)力学性能的影响。结果表明:RCA替代率相同时,清水冻融环境中SCRCAC经历125次冻融循环后的抗压强度、劈拉强度及单轴抗压强度损失率最小,5%质量分数的MgSO4溶液冻融环境中为最大。冻融试验初期硫酸盐可抑制冻融损伤。冻融试验后期,不同冻融环境及RCA取代率下再生粗骨料混凝土与普通混凝土的抗压强度与冻融循环次数的关系曲线逐渐呈现分离。基于此,提出了劈裂抗拉及单轴抗压强度与抗压强度之间的新关系式,该模型能较好地预测RCASCC经硫酸盐冻融后的损伤劣化规律。建立的强度预测模型经游程检验表明模型精度较高。灰熵关联分析表明:清水、5%质量分数的Na2SO4溶液及5%质量分数的Na2SO4与5%质量分数的MgSO4的混合盐溶液冻融环境中冻融循环次数对抗压强度及劈拉强度的影响大于RCA取代率;而与5%质量分数的MgSO4溶液中情况相反;清水环境中冻融循环次数对单轴抗压强度的影响大于RCA取代率。Abstract: The effect of recycled coarse aggregate (RCA) replacement ratios, freeze-thaw environments and freeze-thaw cycles on the mechanical properties of self-compacting recycled coarse aggregate concrete (SCRCAC) were studied by rapid freeze-thaw cycle method. The results showed that when the RCA replacement ratios were the same, the compressive strength, splitting tensile strength and uniaxial compressive strength loss ratio of SCRCAC after being subjected to 125 freeze-thaw cycles were the smallest in the freeze-thaw environment of clear water, and the maximum in the 5% mass fraction MgSO4 solution freeze-thaw environment. Sulfate could inhibit freeze-thaw damage at the initial stage of freeze-thaw. At the late stage of freeze-thaw, the relation curves of compressive strength and freeze-thaw cycles of SCRCAC gradually spearated from that curves of ordinary concrete in different freeze-thaw environments and RCA replacement ratios. Based on that, a new relation between the splitting tensile force and the uniaxial compressive force was presented, better predicted the damage and deterioration law of SCRCAC after freeze-thawing of sulfate. The established strength prediction model showed that the model had high accuracy. Grey entropy correlation analysis showed that the effect of freeze-thaw cycles on compressive strength and splitting tensile strength was greater than that of RCA replacement ratios in the freeze-thaw environment of clear water, in the solution of 5% mass fraction of Na2SO4, and in the solution of 5% mass fraction of Na2SO4 and 5% mass fraction of MgSO4. However, contrary to the situation of the solution of 5% mass fraction of MgSO4. The effect of freeze-thaw cycles on the uniaxial compressive strength was larger than the RCA replacement ratio in clear water.
-
[1] 于婧, 雷实满, 梁兴文, 等. 一种新型混杂钢纤维增强自密实混凝土的配合比设计方法[J]. 建筑材料学报, 2017, 20(4):611-615,629. [2] JIHONG B, YUN Z, JIAN G, et al. Three-dimensional modeling of the distribution and orientation of steel fibers during the flow of self-compacting concrete[J]. Structural Concrete, 2019, 20(5):1-12. [3] ZHENG C, LI S, HOU Y, et al. Frost resistance of fiber-reinforced self-compacting recycled concrete[J]. Reviews on Advanced Materials Science, 2022, 61(1):711-725. [4] XIAO Q, LI Q, CAO Z, et al. The deterioration law of recycled concrete under the combined effects of freeze-thaw and sulfate attack[J]. Construction and Building Materials, 2019, 200:344-355. [5] XIAO Q, CAO Z, GUAN X, et al. Damage to recycled concrete with different aggregate substitution rates from the coupled action of freeze-thaw cycles and sulfate attack[J]. Construction and Building Materials, 2019, 221:74-83. [6] 姜磊, 牛荻涛. 硫酸盐与冻融复合作用下混凝土劣化规律[J]. 中南大学学报(自然科学版), 2016, 47(9):3208-3216. [7] 慕儒, 缪昌文, 刘加平, 等. 氯化钠、硫酸钠溶液对混凝土抗冻性的影响及其机理[J]. 硅酸盐学报, 2001(6):523-529. [8] 王鲜星, 刘元珍, 赵雨, 等. 再生保温混凝土抗冻性能的细观研究[J]. 硅酸盐通报, 2021, 40(11):3601-3607. [9] 孙晓红, 胡大琳, 张雷雷, 等. 考虑冻融和应力影响的混凝土构件碳化试验研究[J]. 硅酸盐通报, 2020, 39(4):1115-1125. [10] MILETIC S, ILIC M, OTOVIC S, et al. Phase composition changes due to ammonium-sulphate:attack on portland and portland fly ash cements[J]. Construction and Building Materials, 1999, 13(3):117-127. [11] 金宝宏, 郑传磊, 侯玉飞, 等. 聚丙烯-钢纤维/再生粗骨料混凝土力学性能正交试验研究[J]. 功能材料, 2021, 52(12):12175-12183. [12] 郭樟根, 陈晨, 范秉杰, 等. 再生粗细骨料混凝土基本力学性能试验研究[J]. 建筑结构学报, 2016, 37(增刊2):94-102. [13] 孙呈凯, 金宝宏, 李家俊, 等. PVA纤维再生混凝土力学性能正交试验研究[J]. 广西大学学报(自然科学版), 2018, 43(4):1569-1575. [14] JIA P, LI L, ZHOU J, et al. Performance evolution of recycled aggregate concrete under the coupled effect of freeze-thaw cycles and sulfate attack[J/OL]. Applied Sciences, 2022, 12(14)[2022-11-10].https://doi.org/10.3390/app12146950. [15] LIU F, YOU Z, YANG X, et al. Macro-micro degradation process of fly ash concrete under alternation of freeze-thaw cycles subjected to sulfate and carbonation[J]. Construction and Building Materials, 2018, 181:369-380. [16] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范:GB 50010-2010[S].北京:中国建筑工业出版社,2010. [17] American Concrete Institute (ACI). Building code requirements for structural concrete and commentary:ACI318-95[S]. Detroit:ACI,1995. [18] 郭樟根, 陈晨, 范秉杰, 等. 再生粗细骨料混凝土基本力学性能试验研究[J]. 建筑结构学报, 2016, 37(增刊2):94-102. [19] 王晋浩, 郑传磊, 金宝宏, 等. 粉煤灰/不同骨料对纤维自密实再生混凝土力学性能影响[J]. 功能材料, 2022, 53(9):9209-9218. [20] 郑传磊, 王晋浩, 金宝宏, 等. 多因素对自密实混凝土力学性能发展趋势的影响[J]. 功能材料, 2021, 52(12):12022-12029,12035. [21] 李旭平. 再生混凝土基本力学性能研究(I):单轴受压性能[J]. 建筑材料学报, 2007(5):598-603. [22] 向星赟, 赵人达, 李福海, 等. 自密实再生混凝土的基本力学性能试验研究[J]. 西南交通大学学报, 2019, 54(2):359-365. [23] 陈宗平, 徐金俊, 郑华海, 等. 再生混凝土基本力学性能试验及应力应变本构关系[J]. 建筑材料学报, 2013, 16(1):24-32. [24] 胡波, 柳炳康, 王成刚. 再生混凝土基本力学性能研究[J]. 合肥工业大学学报(自然科学版), 2014, 37(1):87-90. [25] 王晨霞, 张铎, 曹芙波, 等. 冻融循环后再生混凝土的力学性能及损伤模型研究[J]. 工业建筑, 2022, 52(5):199-207. [26] 祝斯月, 陈拴发, 秦先涛, 等. 基于灰关联熵分析法的高粘改性沥青关键指标[J]. 材料科学与工程学报, 2014, 32(6):863-867.
点击查看大图
计量
- 文章访问数: 77
- HTML全文浏览量: 7
- PDF下载量: 3
- 被引次数: 0