中国科技核心期刊
RCCSE中国核心学术期刊
JST China收录期刊
中国建筑科学领域高质量科技期刊分级目录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高斯Copula贝叶斯模型的盾构下穿既有隧道施工风险的分析

吴忠坦

吴忠坦. 基于高斯Copula贝叶斯模型的盾构下穿既有隧道施工风险的分析[J]. 工业建筑, 2023, 53(11): 55-64. doi: 10.13204/j.gyjzG22103112
引用本文: 吴忠坦. 基于高斯Copula贝叶斯模型的盾构下穿既有隧道施工风险的分析[J]. 工业建筑, 2023, 53(11): 55-64. doi: 10.13204/j.gyjzG22103112
WU Zhongtan. Risk Analysis of Construction with Tunnel Boring Machines Passing Under Existing Tunnels Based on Gaussian Copula Bayesian Network Model[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(11): 55-64. doi: 10.13204/j.gyjzG22103112
Citation: WU Zhongtan. Risk Analysis of Construction with Tunnel Boring Machines Passing Under Existing Tunnels Based on Gaussian Copula Bayesian Network Model[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(11): 55-64. doi: 10.13204/j.gyjzG22103112

基于高斯Copula贝叶斯模型的盾构下穿既有隧道施工风险的分析

doi: 10.13204/j.gyjzG22103112
详细信息
    作者简介:

    吴忠坦,男,1983年出生,工程师。电子信箱:870852150@qq.com。

Risk Analysis of Construction with Tunnel Boring Machines Passing Under Existing Tunnels Based on Gaussian Copula Bayesian Network Model

  • 摘要: 为对盾构下穿既有隧道施工工程安全风险进行分析和管控,提出一种基于高斯Copula贝叶斯(GCBN)模型的盾构下穿既有隧道施工风险分析方法。基于故障树建立了一套包括12个因素的施工安全风险指标体系,将贝叶斯网络的动态推理诊断与Copula理论的依赖性表达相结合,在不确定和不完全信息下构建盾构下穿既有隧道施工风险分析的GCBN模型。以武汉轨道交通12号线下穿既有7号线工程为例,利用高斯Copula识别各因素边际分布类型,计算各因素间相关系数并连接网络中结点。通过模型推理进行定性和定量分析,识别盾构下穿施工安全风险状态,分析各致险因素对风险结果的影响。最后,对敏感性高的因素采取措施进行防控。通过防控前、后模型计算结果对比,实现盾构下穿施工过程实时动态安全预警管控。实践表明:GCBN模型预测结果与专家评价结果吻合,验证了所构建GCBN风险分析模型的可靠性。
  • [1] ZHAN G D M, HUANG Z K, LI Z L, et al. Analytical solution for the response of an existing tunnel to a new tunnel excavation underneath[J]. Computers and Geotechnics, 2019, 108:197-211.
    [2] 陶宇,梁伟桥,方五军.盾构下穿近邻既有隧道稳定性研究[J].工业建筑, 2020, 50(4):66-70.
    [3] YIN M, JIANG H, JIANG Y, et al. Effect of the excavation clearance of an under-crossing shield tunnel on existing shield tunnels[J]. Tunnelling and Underground Space Technology, 2018, 78:245-258.
    [4] 黄向阳,章邦超,梁基冠,等.上软下硬地层盾构下穿施工中既有隧道应力和变形研究[J].建筑安全, 2022, 37(7):4-8.
    [5] MA S K, SHAO Y, LIU Y, et al. Responses of pipeline to side-by-side twin tunnelling at different depths:3D centrifuge tests and numerical modelling[J]. Tunnelling and Underground Space Technology, 2017, 66:157-173.
    [6] 阿卜杜拉,雷春明,田雨,等.盾构下穿对既有隧道影响的模型试验研究[J].地下空间与工程学报, 2020, 16(增刊2):540-544.
    [7] ZHOU Z, GOH Y M, LI Q. Overview and analysis of safety management studies in the construction industry[J]. Safety Science, 2015, 72:337-386.
    [8] 曾铁梅,刘茜,冯宗宝,等.基于PCBN模型盾构下穿既有隧道施工安全风险评价[J].隧道建设(中英文), 2021, 41(10):1692-1699.
    [9] PAN Y, ZHANG L, KOH J, et al. An adaptive decision making method with copula Bayesian network for location selection[J]. Information Sciences, 2021(544):56-77.
    [10] 王双成,高瑞,杜瑞杰.基于高斯Copula的约束贝叶斯网络分类器研究[J].计算机学报, 2016, 39(8):1612-1636.
    [11] JUN H B, KIM D. A Bayesian network-based approach for fault analysis[J]. Expert Systems with Applications, 2017, 81:332-348.
    [12] 周圆媛,何一韬,赵璟璐,等.基于贝叶斯网络的岩溶区盾构隧道施工安全性分析[J].现代隧道技术, 2018, 55(增刊2):764-771.
    [13] 任超,吴伟,黄征凯,等.基于AIC准则的RBF神经网络在GPS高程拟合中的应用[J].测绘科学, 2013, 38(2):77-79.
    [14] 刘文,刘文黎,翟世鸿.基于Copula相依模型的地铁结构安全可靠性分析[J].中国安全科学学报, 2019, 29(8):164-171.
    [15] 勾红叶,冷丹,王涵玉,等.基于混合Copula函数的风雨联合概率分布模型[J].中国公路学报, 2021, 34(2):309-316.
    [16] GUO X, JI J, KHAN F, et al. Fuzzy Bayesian network based on an improved similarity aggregation method for risk assessment of storage tank accident[J]. Process Safety and Environmental Protection, 2021(149):817-846.
    [17] 花玲玲,郑伟.基于复杂网络理论的铁路事故致因分析[J].中国安全科学学报, 2019, 29(增刊1):114-122.
    [18] 刘文黎,吴贤国,张文静,等.地铁健康监测PCBN模型的参数相关性分析[J].土木与环境工程学报(中英文), 2019, 41(2):45-52.
    [19] BALRAM D, LIAN K Y, SEBASTIAN N. Air quality warning system based on a localized PM2.5 soft sensor using a novel approach of Bayesian regularized neural network via forward feature selection[J/OL]. Ecotoxicology and Environmental Safety, 2019, 182[2022-10-31]. https://doi.org/10.1016/j.ecoenv.2019.109386.
    [20] 樊学平,杨光红,肖青凯,等.大跨桥梁主梁失效概率分析的最优R-Vine Copula[J].吉林大学学报(工学版), 2021, 51(4):1296-1305.
    [21] LIU W, WU X, ZHANG L, et al. Sensitivity analysis of structural health risk in operational tunnels[J]. Automation in Construction, 2018, 94:135-153.
    [22] LIANG R, XIA T, HUANG M, et al. Simplified analytical method for evaluating the effects of adjacent excavation on shield tunnel considering the shearing effect[J]. Computers and Geotechnics, 2017(81):167-187.
    [23] LIN X T, CHEN R P, WU H N, et al. Deformation behaviors of existing tunnels caused by shield tunneling undercrossing with oblique angle[J]. Tunnelling and Underground Space Technology, 2019(89):78-90.
    [24] LIU X, FANG Q, ZHANG D, et al. Behaviour of existing tunnel due to new tunnel construction below[J]. Computers and Geotechnics, 2019, 110:71-81.
  • 加载中
计量
  • 文章访问数:  74
  • HTML全文浏览量:  14
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-31

目录

    /

    返回文章
    返回